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Here we will introduce the notion of a spectral sequence, as derived from an exact

couple, and then give as a specific example the Serre spectral sequence. We will intro-

duce the derivation for the spectral sequence of a filtered topological space, following

[Hat04]. For a more in-depth treatment of spectral sequences and their derivation, we

direct the reader to [Gal16].

We will begin with the notion of an exact couple and then, following [Hat04], will

give an example.

Definition 0.1. An exact couple consists of abelian groups A and B, and maps i : A→
A, j : A → E and k : E → A such that the following triangle is exact at each of its

three corners
A A

E

i

jk

We can define a map d = j ◦ k : A→ A and thereby define a derived couple.

Definition 0.2. The derived couple of the exact couple given above consists of abelian

groups A′ = i(A) ⊂ (A) and B′ the homology of E with respect to d, and maps i′ = i|A′,

j′ : A′ → E ′ defined by j′(i(a)) = [ja] and k′ : E ′ → A′ given by k′[e] = k(e) which

form the following commutative triangle

A′ A′

E ′

i′

j′k′

.

Checking that the maps j′ and k′ are well-defined is a simple exercise of diagram

chasing, as is proving the following lemma.
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Lemma 0.3. The derived couple of an exact couple is exact.

This gives us a sequence of abelian groups E,E ′, E ′′, ... which may or may not

stabilize. This sequence, along with the differentials d, d′, d′′, ... is called a spectral

sequence. This is generally formulated as a sequences of pages Er with differentials dr :

Er → Er such that d2r = 0. In this sense the spectral sequences is a more complicated

(and correspondingly more powerful) analogue to the long exact sequence. Just like

long exact sequences are used to express relationships between (co)homology groups

of different spaces, spectral sequences are powerful tools for relating the cohomology

groups of more complicated structures for which a long exact sequence is insufficient.

For example, the Adams spectral sequence is used for computing stable homotopy

groups, the Leray spectral sequence for sheaf cohomology, and the Grothendieck spectral

sequence is useful for computing the composition of derived functors. The Serre spectral

sequence, which we are most interested in, is useful for expressing the relationship

between the (co)homology groups of spaces in a fiber bundle.

In a spectral sequence, the groups Er are typically expressed as a direct sum of

countably many groups which are indexed by Z2. Because of that, Er is usually drawn

over R2 with a group at each lattice-point of Z2. We call Er the rth page of the spectral

sequence, where the (p, q)th direct summand of Er is written Er
p,q.

Differentials are also expressed in terms of the summands. Specifically,

dr : Er
p,q → Er

p−r,q+r−1

so one can tell the page by the direction of the differentials.

Typically, for a spectral sequence to be useful, for each (p, q) there should be some

n ∈ N such that Em
p,q = En

p,q if m ≥ n. That is, Ek
p,q should stabilize after large enough

k. The page with only stable entries is called the infinity page, and is written E∞p,q. In

some cases, the infinity page corresponds to an actual page Er. In others, the infinity

page is the limit page as r goes to infinity (hence the name). The relationship on which

the spectral sequence sheds light is typically expressed by giving the formula for Ek
p,q

for some k and then giving the (p, q)th diagonal on the infinity page. For example, the

Serre spectral sequence for homology is written

E2
p,q = Hp(B,Hq(F ))⇒ Hp+q(E)

while the sequence for cohomology is written

Ep,q
2 = Hp(B,Hq(F ))⇒ Hp+q(E)



3

(note the change of the subscripts and superscripts), where E → B is a fiber bundle

with fiber F . What is meant by the notation is that there exists a spectral sequence

such that the 2nd page is given by the formula on the left-hand side, and such that⊕
a+b=p+q

E∞a,b = Hp+q(E).

Just as in the case of results about long exact sequences, despite the amazing power

of spectral sequences the differentials are, in general, unknown and very difficult to

understand. In the instances which we use the Serre spectral sequence, the pages

have enough trivial entries (i.e. enough (p, q) such that, for example, E2
p,q = 0) that

the calculations become quite straightforward and virtually no information about the

nature of the differentials is necessary.

In the remainder of this section we will construct the exact couple which gives rise to

the Serre spectral sequence, and then give the main theorem which shows its properties.

We will then give some examples to illustrate its power and diversity. There is a version

of the Serre spectral sequence for both homology and cohomology; since we are working

only with cohomology in this document we will only introduce the theorem with respect

to cohomology. The version for homology is very similar; the interested reader can read,

for example, in [Hat04].

In order to construct the exact couple, we must first introduce the idea of a filtered

topological space.

Definition 0.4. A filtration of a topological space X is a collection of subspaces {Xα ⊂
X}α∈I such that I is a totally ordered set, and if α < β then Xα ⊂ Xβ. If X has a

filtration, then X is a filtered topological space.

Examples of filtered topological spaces are CW-complexes, where the filtration is

given by the skeleta, as well as simplicial copmlexes. Also, given a continuous map

f : X → R there exists a natural filtration Xα = {f−1(β) | β ≤ α}.
Now consider a fiber bundle X → B with fiber F and B a CW-complex. Then B

has a natural filtration given by the skeleta of B. We write Bi for the i-skeleton of B,

and we can define a filtration for X, given by Xi = π−1(Bi). For each i, we can take

the long exact sequence associated to the pair (Xi+1, Xi), which is

· · · → Hn(Xi+1, Xi)→ Hn(Xi+1)→ Hn(Xi)→ Hn+1(Xi+1, Xi)→ · · · .

By carefully arranging this long exact sequence for each pair (Xi, Xi−1), we can fit them
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together neatly in a staircase diagram

Hn−1(Xi) Hn(Xi+1, Xi) Hn(Xi+1) Hn+1(Xi+2, Xi+1) Hn+1(Xi+2)

Hn−1(Xi−1) Hn(Xi, Xi−1) Hn(Xi) Hn+1(Xi+1, Xi) Hn+1(Xi+1)

Hn−1(Xi−2) Hn(Xi−1, Xi−2) Hn(Xi−1) Hn+1(Xi, Xi−1) Hn+1(Xi)

where the red indicates the long exact sequence for the pair (Xi+1, Xi). A staircase

diagram as given above determines an exact couple by letting A be the direct sum of all

the absolute cohomology groups Hn(Xi) and letting E be the the direct sum of all the

relative cohomology groups Hn(Xi+1, Xi). The maps i, j and k which form the exact

couple are the maps forming the long exact sequences in the staircase diagram.

The rather remarkable result is that the spectral sequence derived from this exact

couple relates the cohomology of X,B and F in the following way:

Theorem 0.5 (Convergence theorem of the Serre spectral sequence for cohomology).

Let X → B be a fibration with fiber F such that B is path connected, and let G be

an abelian group. If π1(B) acts trivially on H∗(F ;G), then there is a spectral sequence

{Ep,q
r , dr}, as defined above, such that:

(a) Ep,q
2 = Hp(B;Hq(F ;G))

(b)
⊕

p+q=n

Ep,q
∞
∼= Hn(X;Z)

(c) dr : Ep,q
r → E

p−(r+1),q+r
r where Ep,q

r+1 is the homology of Ep,q
r with respect to dr.

(d) stable terms Ep,n−p
∞ are isomorphic to the successive quotients F n

p /F
n
p−1 with re-

spect to a filtration of H∗(X)

The filtration referred to in (d) is given by

H∗(X;Z) = · · · = F 0H∗(X;Z) ⊃ F 1H∗(X;Z) ⊃ · · ·

where F iH∗(X;Z) := ker(H∗(X;Z) → H∗(Xi−1;Z)). We would like to give a few

examples which will give the reader an idea of how the spectral sequence might be

used.
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Example 0.6. We show that if Y is weakly contractible, then H∗(X×Y ;G) ∼= H∗(X;G).

This is not difficult to verify via the Künneth theorem, but we include the example

nonetheless to give the reader some intuition on how the spectral sequence operates.

Consider the trivial bundle X × Y → X with fiber Y . Using the formula from

Theorem 0.5, we have Ep,q
2 = Hp(X;Hq(Y ;G)). Since Y is contractible, the E2-page

of the spectral sequence only has nontrivial groups if q = 0. This gives us a row of

nontrivial groups, namely Ep,0
2 = Hp(X;G).

The differentials from the E2-page onward are not horizontal, and so all the differen-

tials are trivial and we have that the E2-page is the E∞-page and thus Hp(X ×Y ;G) ∼=
Hp(X;G) = Hp(X;H0(Y ;G)), as desired.

Example 0.7 (Products of spheres). In this example we will compute H∗(Sd×Sd+1;Z)

for all d. Note that Sd × Sd+1 fits into the trivial fiber bundle

Sd Sd × Sd+1

Sd+1.

This gives us an E2 page with only four nontrivial entries, being E0,0
2 , E0,d

2 , Ed+1,0
2

and Ed+1,d
2 , all of which are Z. In this case, the E2 page is the E∞ page because

nowhere do the differentials map between any two of these four nontrivial entries. Thus

Hk(Sd × Sd+1) = Z if k = 0, d, d+ 1, 2d+ 1 and 0 otherwise.

There is an additional structure on the Serre spectral sequence for cohomology

which is extremely important. This is that it is multiplicative, in the sense that there

are bilinear maps

∪ : Ep,q
r ⊗ Ep′,q′

r → Ep+p′,q+q′

r

induced by the cup product on cohomology. The differential follows the Leibniz rule

with regards to this multiplication. This is very useful, as we will see here in Example

0.8.

Example 0.8. This example is considerably more interesting than the previous two: we

will show the cup product structure of CP n, which cannot be done using exact sequences.

Recall that H i(CP n) = Z if i is even, i ≤ 2n, and 0 otherwise. We first start with the

fibration

S1 S2n+1

CP n
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which gives us, by the formula from Theorem 0.5, the only nontrivial rows are 0 and 1.

The first two rows of the first quadrant have the form

Z 0 Z 0 · · · 0 Z
Z 0 Z 0 · · · 0 Z

where the only differentials which could be nonzero are of the form d2 : Ep,1
2 → Ep+2,0

2 ,

mapping Z→ Z. Since we know the cohomology of S2n+1 is Z if i = 0 or 2n+ 1, and 0

otherwise, each of these maps must be isomorphisms for 0 ≤ p ≤ 2n− 2 because taking

the homology of the E2-page with respect to d2 must leave nontrivial groups only in E0,0
3

and E2n,1
3 . This gives us the following image of the E2-page.

Z 0 Z 0 · · · Z 0 Z

Z 0 Z 0 · · · Z 0 Z

∼= ∼= ∼=

We will use the cup product structure on the spectral sequence to deduce the cup product

structure on CP n, whose cohomology groups lie on the bottom row of the diagram.

First, take 1 ∈ E0,0
2 = H0(CP n;Z) and choose a generator a ∈ E0,1

2 = H0(CP n;Z).

Let x ∈ E2,0
2 = H2(CP n;Z) be the image of a under d2. Now consider xa ∈ E2,1

2 =

H2(CP n;Z) and note that by the Leibniz rule

d2(xa) = (d2x) · a+ x · (d2a).

Then d2x = d2(d2a) = 0 and d2a = x so

d2(xa) = (d2x) · a+ x · (d2a) = x2,

which generates E4,0
2 = H4(Cpn;Z). Likewise,

d2(x
2a) = (d2x

2)a+ x2d2(a) = x3,

and so on. By continuing this process we deduce that

H∗(CP n;Z) = Z[x]/(x2n+1).
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