
Formal Tools for Specifying

Financial Smart Contracts

Derek Sorensen

Clare College

September 2023

This dissertation is submitted for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done in

collaboration except as declared in the Preface and specified in the text. It is not substantially the same as

any that I have submitted, or am concurrently submitting, for a degree or diploma or other qualification

at the University of Cambridge or any other University or similar institution except as declared in the

Preface and specified in the text. I further state that no substantial part of my dissertation has already

been submitted, or is being concurrently submitted, for any such degree, diploma or other qualification

at the University of Cambridge or any other University or similar institution except as declared in the

Preface and specified in the text. This dissertation does not exceed the prescribed limit of 60 000 words.

Derek Sorensen

September, 2023

Abstract

Formal Tools for Specifying Financial Smart Contracts

Derek Sorensen

Financial smart contracts routinely manage billions of US dollars worth of digital assets, and as a

consequence bugs in smart contracts can be extremely costly. Because of this, much work has been done

in formal verification of smart contracts to prove a contract correct with regards to its specification.

However, financial smart contracts have complicated specifications, and it is not all straightforward to

write one which correctly describes its intended behaviors. As a response to this challenge, we develop

formal tools for specifying financial smart contracts. We target aspects of contract specification which

are typically difficult to address and which can be a source of expensive contract vulnerabilities. In doing

so, we hope to expand the capability of formal methods to specify desired contract behavior and thereby

prevent catastrophic loss of funds.

Acknowledgements

First to my primary supervisor Anil, for giving me a second chance at a PhD when my first topic did not

work out as I’d hoped; for his unbounded enthusiasm in pursuing meaningful and impactful things; for

his exceptional leadership; for his wise advice in business and research; for pressing me to find one single,

coherent thread to my thinking that transformed this thesis it into what it is now.

To my secondary supervisor Keshav, for his extraordinary and unrelenting ability to find weaknesses in

my thinking; for his instructive stories; for his groundedness that forces me to confront the world as it is

and do research that is relevant to the world; for forcing me to justify all of my ideas with the utmost of

rigor; and for taking the time to meticulously read my work.

To the Choir of Clare College, which gave me new life and love for the city of Cambridge and for my

college after the profound isolation and suffering of successive lockdowns, having spent more than four

months without getting within two meters of another human soul; for the music that inspires me to

commune with the Divine and which has taught me to see research and mathematics in the transcendence

that they embody; for the music, the parties, the late nights, the trips, and the unforgettable memories.

To the Rev’d Dr Mark Smith, for our many chats on life, faith, and theology; for our trips to the

pub in between lockdowns; for our many Bible study sessions; for making the chapel a sacred space of

worship—all of which ultimately culminated in my baptism. To the Chapel of Clare College, for our

hilarious lunches, formals, and trivia nights; for the moral support to continue on with a PhD through

the depths of lockdown; for making a community of faith in chapel.

To Mike Stay, for giving a wide-eyed and over-confident algebraic topologist his first job in formal methods

and giving him the freedom and flexibility to relate to it on his own terms.

To my mother for her quiet but vigorous encouragement to avoid abandoning my goals, and to my father

whose unbridled confidence in my abilities has given me new (and perhaps unsubstantiated) confidence

when I have found myself discouraged.

And finally to Luke, the love of my life and the missing puzzle piece for this document. You are infused

into the beating heart of this work and all of my work to come.

Words cannot express my gratitude; thank you all.

Contents

1 Introduction 15

1.1 Formal Specification and Verification of Smart Contracts 15

1.1.1 Dexter2 Verification . 15

1.2 Challenges in Contract Specification . 17

1.2.1 Challenge 1: Reasoning About a Specification’s Completeness 18

1.2.2 Challenge 2: Reasoning About Contract Upgrades 19

1.2.3 Challenge 3: Reasoning About Optimized and Performant Code 20

1.3 Formal Tools for Specifying Financial Smart Contracts . 21

1.4 Associated Publications . 21

2 Related Work 23

2.1 Smart Contract Language Embeddings . 23

2.1.1 Low-Level Language Embeddings . 24

2.1.2 Intermediate- and High-level Language Embeddings 25

2.2 High-Level Tools in Proof Assistants . 26

2.3 Formal Specification and Verification in Proof Assistants 27

2.3.1 Smart Contracts Verified Interactively . 27

2.3.1.1 Dexter2, a Formally Verified AMM . 28

2.3.1.2 Djed, a Formally Verified Stablecoin . 30

2.3.1.3 A Formally Verified Generic AMM Protocol 30

2.4 Proof Assistants and Embedded Theories . 31

2.5 Conclusion . 31

3 Background 33

3.1 ConCert From a High Level . 34

3.2 Continuing in More Detail . 34

3.2.1 Smart Contracts in ConCert . 35

3.2.2 The Blockchain in ConCert . 36

3.2.3 Blockchain Semantics in ConCert . 38

3.2.4 Specification and Proof in ConCert . 41

3.3 Conclusion . 44

4 Axiomatization and Metaspecification 45

4.1 Introduction . 45

4.2 Related Work . 46

4.3 The Problem of (In)Correct Specification . 47

4.4 Contract Axiomatization and Metaspecification . 49

4.4.1 Contract Axiomatization . 49

4.4.2 Metaspecification . 50

4.5 Example: Formalizing Structured Pools . 51

4.5.1 The Formal Specification, or Contract Axiomatization 51

4.5.1.1 Storage . 52

4.5.1.2 Interface . 52

4.5.1.3 Entrypoint Functions . 53

4.5.2 The Formal Metaspecification . 54

4.5.2.1 Rational to natural-number arithmetic 56

4.5.2.2 Specifying the other entrypoint . 57

4.6 (In)Correct Contract Specifications . 57

4.6.1 Relationship to Refinement Types . 58

4.7 Limitations and Future Work . 59

4.7.1 Formal Theories of DeFi and AMMs . 59

4.8 Conclusion . 60

5 Contract Morphisms 61

5.1 Introduction . 61

5.2 Related Work . 62

5.3 Contract Morphisms . 63

5.3.1 Morphisms of Pure Functions . 63

5.3.2 Contract Morphisms in ConCert . 64

5.4 Morphisms to Specify and Verify Contract Upgrades . 68

5.5 Further Applications of Morphisms in Formal Verification 73

5.5.1 Hoare Properties and Contract Morphisms . 73

5.5.2 Isomorphisms and Propositional Indistinguishability 74

5.6 Conclusion . 74

6 Contract Bisimulations 77

6.1 Introduction . 77

6.2 Related Work . 78

6.3 Contract Isomorphisms . 78

6.3.1 Bisimilarity . 79

6.3.2 Bisimulations in ConCert . 79

6.3.2.1 Constructing Bisimulations via Contract Isomorphisms 80

6.4 Contract Bisimulations Induce Generated Graph Isomorphisms 81

6.4.1 Trace Equivalences in ConCert . 81

6.4.1.1 Contract Traces . 81

6.4.1.2 Contract Trace Morphism . 82

6.4.1.3 Contract Trace Isomorphisms . 83

6.4.2 Contract Morphisms to Contract Trace Morphisms 84

6.5 Using Bisimulation as a Tool for Formal Specification . 85

6.5.1 Linked Lists and Dynamic Arrays . 85

6.5.2 The Bisimulation . 87

6.5.2.1 Contract as a Specification . 87

6.5.2.2 Porting Properties Over the Bisimulation 88

6.6 Conclusion . 90

7 Conclusion 91

References 93

A Structured Pools for Tokenized Carbon Credits 113

A.1 Introduction . 113

A.2 Related Work . 113

A.3 Structured Pools . 114

A.3.1 Deposits . 115

A.3.2 Withdrawals . 115

A.3.3 Trades . 115

A.4 Properties of Structured Pools . 119

A.5 Limitations . 123

A.6 Conclusion . 123

B Tokenized Carbon Credits 125

B.1 Introduction . 125

B.1.1 Outline . 126

B.2 Related Work . 126

B.3 Tokenized Carbon Credits . 127

B.3.1 Toucan . 128

B.3.2 Flowcarbon . 129

B.3.3 MOSS . 130

B.3.4 Carbovalent . 130

B.3.5 Nori . 130

B.3.6 Likvidity . 131

B.3.7 Others . 131

B.3.8 Summary . 132

B.4 Trading Carbon Credits . 132

B.5 Programmable Carbon . 133

B.5.1 Offsetting Services . 134

B.5.2 Carbon-Backed Digital Assets . 134

B.5.3 Climate Insurance . 134

B.5.4 Art and Gaming . 134

B.5.5 Relating to DeFi . 135

B.5.6 Key Takeaways . 135

B.6 Climate Data Availability . 136

B.6.1 Filecoin Green . 136

B.6.2 dClimate . 136

B.6.3 OFP . 137

B.6.4 Key Takeaways . 137

B.7 Related Organizations . 137

B.8 Conclusion . 138

Glossary 141

Acronyms 145

Chapter 1

Introduction

Smart contracts are programs stored on a blockchain that automatically execute when certain predefined

conditions are met. Financial smart contracts are broadly defined as smart contracts that serve as a digital

intermediary between financial parties. These include contracts collectively referred to as decentralized

finance (DeFi), and come in many forms, including decentralized exchanges (DEXs), automated market

makers (AMMs), crypto lending, synthetics (including stablecoins), yield farming, crypto insurance

protocols, and cross-chain bridges [228]. Financial smart contracts frequently manage huge quantities

of money, making it essential for the underlying code to be rigorously tested and verified to ensure its

correctness and security [244].

A defining characteristic of smart contracts is that once deployed, they are immutable. Thus if a contract

has vulnerabilities, the victims of an attack are helpless to stop the attacker if the contract wasn’t designed

with the foresight sufficient to respond. Due to the high financial cost of exploits, it is frequently worth

the large overhead cost in time and expertise to formally verify a smart contract before deployment.

1.1 Formal Specification and Verification of Smart Contracts

Much work has been done in formal verification of smart contracts [29, 54, 63, 89, 138, 208, 218]. Broadly

speaking, the goal of formal verification is to prove that a contract is correct with regards to a specification.

However, financial smart contracts have complicated specifications, and there are several common and

desirable properties of smart contracts which are not at all straightforward to correctly specify.

1.1.1 Dexter2 Verification

To illustrate, consider the formal verification work on Dexter2, an AMM on the Tezos blockchain. Dexter2

has been formally verified by at least three different groups using three different formal verification

15

∆x

∆y

Figure 1.1: A trade of ∆x for ∆y along the indifference curve xy = k.

tools [50, 110, 145]. Each was based on the same informal specification [27]. The informal specification

describes the contract interface, including its entrypoint functions, error messages, outgoing transactions,

the contents of its storage, some invariants of the storage (including that its store of tokens never fully

depletes), fees, and the logic of each of the entrypoint functions. This is a standard and detailed contract

specification.

However, while the specification is detailed on the contract design and interface, it doesn’t include anything

about expected or desired behavior from an economic perspective. This is not because the expected or

desired economic behavior is unknown or uninteresting. It was clearly articulated by Vitalik Buterin,

co-founder of Ethereum, in what he wrote in March 2018 about AMMs on the online forum Ethereum

Research [49]. Buterin proposed that AMMs trade between a pair of tokens along an indifference curve

xy = k, (1.1)

where x represents the quantity held by the contract of the token being traded in, y represents the

quantity held by the contract of the token being traded out, and k is a constant. The tokens held by

the contract come from liquidity providers, which are investors who deposit tokens into the AMM in

exchange for a reward, most often a share of transaction fees. That k is constant means that a trade of

∆x of one token yields ∆y of another such that the product from (1.1) stays constant at k:

(x+∆x)(y −∆y) = k.

Buterin argued that an AMM that trades along (1.1) features efficient price discovery. He also argued

that it can properly incentivize liquidity providers by charging a 0.3% fee on each trade to give to them.

We can probably convince ourselves that the informal specification of Dexter2 [27] features these economic

qualities described by Buterin, including efficient price discovery and some suitable incentive mechanism

so that investors deposit tokens into the AMM contract and provide liquidity to the market; however,

concluding that the informal specification [27] or its formal counterparts [50, 110, 145] actually imply

16

any of these economic behaviors is not a given fact. AMM fees and liquidity provision alone are highly

complex topics, and are the subject of several economic studies, including on choosing optimal transaction

fees [74, 84, 83], how liquidity providers react to market changes [99], and how all of that relates to the

curvature of the indifference curve xy = k [15]. It was also shown that front-running attacks can warp the

incentive scheme of the blockchain itself in such a way that could compromise its underlying security [61].

There is then an outstanding question of whether any of Dexter2’s specifications are correct with regards

to the desired—indeed, essential—high-level economic and game-theoretic behavior of the resulting AMM.

Not only do these important economic and game-theoretic factors not make it into any of Dexter2’s

specifications, formal or informal, but to complicate matters a brief study of the three formalizations

[50, 110, 145] of Dexter2’s informal specification [27] reveals that each differs substantively both in how

the properties of the informal specification are formalized, and in what assumptions are made in the

process of verification. (More on this in Chapter 2.)

Furthermore, were we to try to formally specify some of the aforementioned high-level economic and

game-theoretic behaviors on the Dexter2 contract it is not at all obvious how we would go about doing

so. Most specification languages and models of computation are too low-level to easily admit clear

specifications of such properties. What model or framework would we use, for example, to specify that

Dexter2 facilitate an efficient market?

As codebases go, Dexter2 is quite small—only a few thousand lines—but as we’ve seen much is expected

of it in terms of its economic and game-theoretic behavior; because AMMs like Dexter2 routinely manage

billions of USD worth of funds, much is also at risk in case of a bug. Furthermore, despite the fact that

they are not present in any of Dexter2’s specifications, it is difficult to conceptualize a notion of Dexter2’s

correctness that does not include some of the economic properties that we have just mentioned, directly

or indirectly. It is, however, not obvious that these properties hold by reading any of the aforementioned

specifications. Thus we are left with the problem of how to formally specify that required behavior, which

leads us to introduce the problems in contract specification and verification which we will address in this

thesis.

1.2 Challenges in Contract Specification

Creating a formal framework in which one can perfectly articulate the intended behavior, from all levels of

analysis, of a financial smart contract is far out of scope of what we could ever hope to present here. We

can however identify some challenges to doing so and take some modest steps in that direction. In what

remains of this chapter we outline three challenges to formally specifying and verifying financial smart

contracts which relate to the complex nature of formally specifying said contracts. These are the challenges

of reasoning about: a specification’s completeness; upgradeable contracts and contract upgrades; and

contract optimizations and optimized code. These challenges are the subject of the forthcoming work.

17

1.2.1 Challenge 1: Reasoning About a Specification’s Completeness

Our first challenge is to understand how complete a contract specification is so as to not miss bugs due

to underspecification. An ideal formal specification is consistent (free of contradiction) and complete

(fully descriptive of contract behavior) [55, 230]. One can prove a formal specification consistent by

producing an implementation and proving it correct with regards to that specification, but asserting that

a specification is complete is far more complex. To do so we must have some way of asserting that the

contract specification behaves correctly at all levels of analysis; a specification that permits unintended

and pathological behavior would be incorrect by any reasonable standard.

This is often more subtle than it seems, even in the flexible and expressive setting of natural language

specifications. Take for example the extensively documented specification of Beanstalk, an Ethereum-

based stablecoin protocol which uses a decentralized governance protocol. This governance protocol

features an emergency commit function, which gives a supermajority of governance votes power to quickly

respond to an emergency by approving and executing a proposal in one single vote. The goal of said

emergency commit function is to allow governance to respond quickly to an emergency, providng added

security in the face of unforeseen vulnerabilities.

In a turn of grim irony, this very emergency response mechanism turned out to be the source of a

catastrophic exploit. On April 17, 2022, an attacker used a flash loan to temporarily buy a supermajority

of governance tokens and execute a proposal, draining the contract of approximately 77 million USD in

lost contract assets [72]. A flash loan is a loan mediated by a smart contract and issued for the duration

of a single, atomic transaction. Due to its atomicity, a flash loan removes the creditor’s risk of debt

default, and thus enables enormous, uncollateralized loans. For example, the Aave flash loan pool has had

in excess of 1 billion USD which can be loaned out [191]. Flash loans can introduce unintuitive contract

behavior, deviating from that of traditional markets [93, 95, 191, 226]. Importantly, the Beanstalk attack

leveraged the unexpected behavior due to the availability of flash loans, exploiting the faulty design of

the governance mechanism rather than incorrect code [77].

Flash loans are often a source of unexpected contract behavior which complicates the task of writing

a complete (or rather, a correct) specification. More examples of successful flash loan attacks include

attacks on the Spartan Protocol and Pancake Bunny, two DeFi contracts on the Binance Smart Chain

(BSC). Attackers used flash loans to make huge trades and temporarily manipulate market prices of

certain assets. Both of these contracts used these market prices in the contract logic, and in both cases

this lead to pathological—though, again, correct according to the flawed specification—contract behavior.

In May 2021, an attacker drained the Spartan Protocol contract for a profit of roughly the equivalent of

30 million USD [48, 109]. Another attacker drained Pancake Bunny of 114k WBNB and 697k BUNNY

tokens, amounting to about 45 million USD at the time in lost funds [47, 96, 106, 181].

Finally, Mango Markets, a Solana-based DEX, was attacked in October 2022 for approximately 116

million USD in contract assets [213]. The attack consisted of a complicated and subtle trading strategy

18

which only a sophisticated trader would be able to see and exploit [40]. CoinDesk reported that the

attacker did everything within the parameters of the platform’s design [126]. Avraham Eisenberg, the

attacker, wrote:

I believe all of our actions were legal open market actions, using the protocol as designed, even

if the development team did not fully anticipate all the consequences of setting parameters the

way they are. [25]

We would recognize each of these exploits as attacks, despite the fact that the contracts were functioning

as specified, which tells us that the specifications were erroneous as they did not accurately capture the

intended economic behaviors. To the contrary, they permitted unintended and pathological behavior.

Issues of incomplete specifications are common sources of vulnerabilities for financial smart contracts

because the implications of a specification can be difficult to understand. Crucially, formal verification is

useless to mitigate these vulnerabilities without a formal framework for understanding the completeness

or correctness of a specification because they are vulnerabilities of the specification itself. In an attempt

to mitigate this challenge, in Chapter 4 we offer a formal framework of contract axiomatization and

metaspecificaiton that could help us address the challenge of formally reasoning about the completeness

of a formal specification.

1.2.2 Challenge 2: Reasoning About Contract Upgrades

Our next challenge is to understand how to reason about contracts as they iterate through upgrades.

Despite being immutable once deployed, nearly all smart contracts undergo regular versioned upgrades.

This most often takes the form of a contract hard fork, where the contract developers urge their users

to use the most recently-deployed contract. However, this can also be done via upgradeable contracts,

or contracts which include a predefined process for proposing and executing changes to the contract

functionality—an upgrade. Irrespective of the method of upgrade, smart contract upgrades are costly from

a verification perspective and introduce complications that can be a meaningful source of vulnerabilities

when done incorrectly.

The particular issue on which we will focus is a common failure to align the intent of an upgrade with its

actual resulting specification and code, which can result in undiscovered vulnerabilities in the upgraded

contract. For example, consider Nomad, a cross-chain bridge protocol. In August 2022, more than 500

hacker addresses exploited a bug introduced by a faulty upgrade to one of the Nomad smart contracts

[201]. The upgrade incorrectly added the null address (0x000...000) as a trusted root, which turned off

a key safety check, allowing anyone to withdraw arbitrary amounts of funds from the Nomad contract to

their wallet by calling the contract with a particular payload. The attack resulted in 190 million USD

in lost funds [73, 108]. Similarly, Uranium Finance, an AMM, suffered a costly exploit after a faulty

contract upgrade. The original contract contained a constant, K, equal to 1,000 in three different places,

19

which was used to price trades. The update changed this value to 10,000 in two places but not the

third, presumably to calculate trades with higher precision. The result of this was that the attacker could

swap virtually nothing in for 98% of the total balance of any output token, which resulted in a loss of 50

million USD of contract funds [80]. NowSwap, a nearly identical application, upgraded with the same

error and incurred a loss of 1 million USD [36].

It is clear that none of these contract upgrades captured the actual intent of the upgrade because for

each the new contract version violated critical safety invariants that held for the previous version. The

Uranium Finance and NowSwap vulnerabilities had easy solutions, using global constants, but even so

these are examples that point to a deeper problem for formal verification. Instead of reusing any work

on previous contract versions, one must repeat the full verification process for each contract upgrade.

This relies heavily on fallible intuition, can lead to unexpected vulnerabilities, and drives up the cost of

formally verifying smart contracts. Furthermore, because verifying software is time, labor, and resource

intensive, it can be difficult to justify formally verifying software which may be upgraded quickly or

frequently—a problem shared with other verified software [195, 233]. Each of these factors limit the

effectiveness of formal methods to address security issues in real-world software, inhibiting verification as

business and security propositions [207].

What is needed is a practical and formal framework through which to formally specify and verify contract

upgrades. As it stands we have no such framework apart from repeating the formal specification and

verification process on a new contract version. We will address this in Chapter 5 by introducing contract

morphisms as a tool for formally specifying and verifying contract upgrades and upgradeability.

1.2.3 Challenge 3: Reasoning About Optimized and Performant Code

The final challenge we consider here is how to effectively reason about optimized and performant code. The

efficacy of formal verification to prevent actual, critical contract vulnerabilities depends on the feasibility

of applying formal verification to deployable contract code. However, deployable code, optimized for

performance, is typically more difficult to formally reason about than a reference implementation. Code

highly optimized for performance thus risks vulnerability due to the difficulty of formal reasoning, while

code written for ease of formal reasoning may not be efficient enough for the resource-scarce environment

of smart contracts. Ideally, we would reason about contracts in a state optimized for formal reasoning

while still deploying them in a state optimized for efficiency and gas consumption.

As it stands no formal framework exists to address this problem for smart contracts. To that end in

Chapter 6 we introduce a formal framework of extensional equivalence between smart contracts in Coq,

called contract isomorphisms. These equivalences will allow us to port proofs between contracts that can

be proved to be bisimilar, and to use contracts themselves as specifications. Their eventual goal is to

enable reasoning about optimized contracts in terms of more intelligible ones.

20

1.3 Formal Tools for Specifying Financial Smart Contracts

The approach we take to address these three challenges draws on the robust mathematical setting offered

by Coq. Axiomatization, morphisms, and isomorphisms are all classical mathematical techniques that we

formalize in ConCert to add to the language of formal specification. We hope to enable practitioners to

more accurately and rigorously specify financial smart contracts in a formal setting, ultimately preventing

catastrophic loss of funds.

We proceed as follows. In Chapter 2, we survey related work; as our work is in Coq, we focus on formal

verification in proof assistants and the advantages of their uniquely mathematical setting. In Chapter

3, we give the necessary background in Coq and ConCert, the formal framework on which our work

builds. In Chapter 4, we address the challenge of reasoning about completeness by introducing the formal

framework of contract axiomatization and metaspecification. In Chapter 5, we address the challenge of

reasoning about contract upgrades by introducing the formal tool of contract morphisms. In Chapter 6,

we address the challenge of reasoning about optimized and performant code by introducing the formal

tool of contract isomorphisms. In Chapter 7, we conclude.

1.4 Associated Publications

Sorensen, D. (In)Correct Smart Contract Specifications. ICBC 2024. (Chapter 4)

Sorensen, D. Towards Formally Specifying and Verifying Smart Contract Upgrades in Coq. FMBC 2024.

(Chapter 5)

Sorensen, D. Formally Specifying Contract Optimizations With Bisimulations in Coq. Submitted to

FMBC 2025. (Chapter 6)

Sorensen, D. Structured Pools for Tokenized Carbon Credits. ICBC 2023. (Appendix A)

Sorensen, D. Tokenized Carbon Credits. Ledger, 2023. (Appendix B)

21

22

Chapter 2

Related Work

The background setting of our work is primarily smart contract verification in interactive theorem provers

(ITPs), or proof assistants, such as Agda, Lean, and Coq. We survey ITP-based tools for formally

verifying smart contracts, focusing on the advantages offered by the uniquely mathematical verification

setting of an ITP. The formal tools of our work here rely on these robust mathematical foundations.

We proceed as follows. In Section 2.1 we survey the most prevalent technique for ITP-based contract

verification, a language embedding into a proof assistant. We survey low-, intermediate- and high-level

language and virtual machine embeddings into proof assistants. In Section 2.2 we survey high-level

verification tools for smart contracts which are not language embeddings, but which are either built on top

of language embeddings or can be formally linked to one. In Section 2.3 we consider formal specification

in theorem provers, studying specific instances of contracts verified in proof assistants. We consider the

issue of correct specification, and how proof assistants may offer a solution unique to other proof tools for

smart contracts. We conclude in Section 2.5 with challenges and future directions of proof-assistant-based

smart contract formal verification.

2.1 Smart Contract Language Embeddings

By far the most common form of ITP-based smart contract verification tool is an embedding—deep,

shallow or both—of a smart contract language into the proof assistant. In many ways this makes perfect

sense. Smart contracts execute in the siloed environment of a blockchain and execution semantics are

both deterministic and well-defined. In contrast with software which interacts with the physical world, in

smart contract verification there is seemingly little more to consider to its behavior than the execution

from its perspective.

This section consists of a survey of such language embeddings, which can be neatly classified as low-,

23

intermediate- or high-level language embeddings. Seeing as at the time of writing Ethereum is the

blockchain with the most active development [119], most of these tools target either the Ethereum virtual

machine (EVM) or Solidity, the high-level language most commonly used to develop smart contracts for

EVM-comaptible chains [211]. There are other blockchains and languages for which ITP-based verification

tools have been made—most prominently, the Tezos blockchain—and we also include those tools.

2.1.1 Low-Level Language Embeddings

The most important set of examples of low-level language or virtual machine embeddings are that of

the Ethereum virtual machine (EVM). EVM bytecode, like other low-level languages, is seldom written

directly, but it is useful to do formal reasoning at the bytecode level in order to avoid (indeed, discover)

any bugs due to a compiler, e.g. from Solidity [211], and minimize the trust base of the verification

method.

The first formal definition of the EVM that implemented all of its op codes was in Lem [105], a formal

language for defining semantic models which can be translated into OCaml for testing, Coq, HOL4,

and Isabelle/HOL for proof, and LaTeX and HTML for presentation [137]. The stated goal of this

formalization in Lem is to serve as a basis for smart contract verification that targets proof assistants

in particular as the verification tool. This is in contrast to a tool like the K Framework [197] and its

associated EVM formalization [104], which use alternative forms of proof and verification (though are

still interactive).

The great downside to interactive verification at the bytecode level is the unintelligibility of proof goals

as well as the sheer tedium of writing proofs. There have been some efforts to mitigate this. The first

we mention is ETH-Isabelle [11], a tool based on the embedding of the EVM in Isabelle/HOL due to

the EVM semantics in Lem [105]. ETH-Isabelle addresses the intricacy of manually verifying EVM

bytecode by abstracting EVM instructions into blocks which can be composed, and on which one can

use a Hoare-style logic to derive semantic properties of composed blocks from the properties of its parts.

The logic they propose is designed to express complex safety and security requirements at a higher level

which makes manual verification of EVM bytecode more intelligible and feasible. This approach is not

dissimilar to embeddings of medium- and high-level languages, except that the analogue to a compiler in

this case is given by these bytecode blocks and the associated logic. However, these abstractions are not

as expressive or intricate as something like Solidity, so the trust basis remains small.

Another good set of examples are formalizations of the EVM into Why3 [242, 142], a tool for formal

specification and verification in which proofs can be discharged with the help of both automated and

interactive theorem provers [79]. The specification language of Why3, WhyML, is a dialect of ML designed

to generate first-order proof obligations. These can then be translated to various tools, including Z3 [62],

an SMT solver, or Coq [59]. The idea here is to make verifying EVM bytecode feasible by discharging as

many proof obligations as possible to an SMT solver and interactively proving anything else.

24

The final approach to interactively verifying EVM bytecode that we will see is an embedding of the EVM

into Coq [26]. Rather than stating and proving specific results on contracts, this approach uses automated

techniques to harden contracts at the bytecode level against known vulnerabilities. The EVM embedding

into Coq is used primarily to prove input-output equivalence between the original and hardened bytecode.

It also leaves erroneous states undefined so that proved theorems implicitly guarantee that the contract

avoided those states.

There are similar embeddings for other smart contract languages, including for the Tezos smart contract

language Michelson, a low-level, stack-based language [10]. Mi-Cho-Coq, for example, is an embedding of

Michelson into Coq [42]. Like EVM bytecode, Michelson is typically too low-level to read or write in, and

similar to before we have WhyISon, a tool which transpiles Michelson into WhyML [60], thus facilitating

both manual and automated reasoning on Michelson smart contracts.

Our set of examples of low-level language embeddings has by no means been exhaustive, but it illustrates

important points about smart contract verification in proof assistants. The first is that the manifold

benefits of interactive verification come at the cost of it being interactive. Thus one continually encounters

a tradeoff: Low-level embeddings into proof assistants minimize the trust base and maximize rigor, but

because these tools require interaction that comes at the cost of intelligibility and feasibility. Strategies to

address this tradeoff come either in the form of outsourcing feasible goals to an automated proof assistant,

thus minimizing the need for prover interaction, or of some sort of abstraction—be that in the logical

framework or in the language itself—so that proof becomes more intelligible and thus more feasible.

Our primary interest here is in those tools of abstraction used to make stating and proving properties of a

contract’s specification more feasible in the interactive setting. We continue in this section by discussing

medium- and high-level language embeddings into ITPs and the associated abstractions. We continue the

discussion on abstraction later on in 2.2 and 2.3.

2.1.2 Intermediate- and High-level Language Embeddings

Intermediate- and high-level languages have the advantage of intelligibility and can be more straightforward

to reason about [121], especially if they are statically typed functional programming languages [19].

However, the abstraction may come at the cost of rigor. As they sit at a higher level of abstraction, they

require a rigorous language embedding as well as a correct compiler down to the low-level, executable

code which preserves the proven properties [121]. As Li et al. observe in [121], higher-level languages

generally add to the intuiteveness and manageability of verification, while low-level languages minimize

the trust base of verification.

Once again we start with Ethereum-based contract verification, this time with tools that target Solidity

[211]. As we will see, to rigorously verify contracts in higher-level languages we need some sort of

foundational machinery that connects the higher-level language with bytecode or something analogous.

25

Our first example is is FSPVM-E [238], a formal symbolic process virtual machine embedded into Coq that

targets a subset of Solidity called Lolisa [237]. To formally verify contracts in Lolisa (Solidity), FSPVM-E

includes a Lolisa interpreter, FEther, the so-called execution engine of Lolisa which includes executable

formal semantics verified in Coq [236]. Finally, FSPVM-E includes a formal memory model, the GERM

framework, which virtualizes memory hardware, basic memory operations, and pointer arithmetic in Coq.

Other tools take the perhaps more straightforward approach of a deep or shallow embedding of Solidity

into a proof assistant. Take for example Isabelle/Solidity, a deep embedding of (a subset of) Solidity

into Isabelle/HOL [129]. Isabelle/Solidity is an executable denotational sematantics for Solidity in

Isabelle/HOL [128] which supports domain-specific primitives (e.g. money transfer), a gas model, and

domain-specific automated proof methods. These semantics were verified as a legimate implementation of

Solidity against Ethereum’s test suite.

Other embeddings of Solidity into proof asistants follow a similar pattern of formalizing the semantics

of Solidity (or something close to it) through a deep or shallow embedding [30, 142, 192]. Others opt

for formally verifying contracts at an intermediate language level, e.g. Yul, in Isabelle/HOL, targeting

EVM bytecode [121], and Albert, in Coq, targeting Mi-Cho-Coq [43], arguing that this approach takes

a middle ground of low- and high-level language embeddings and enjoys the benefits of both. Finally,

others embed DSLs that target languages like Solidity or Michelson which specialize in the properties

that they can express and verify. Two examples of these are Scilla, which can be used to reason about

temporal properties of smart contracts, and which targets Solidity [206], and Archetype, a Tezos-based

DSL which targets business logic and uses Why3 [41].

2.2 High-Level Tools in Proof Assistants

We have now seen tools that offer some advantages of using proof assistants—rigor, for example—but

we could reasonably compare these to competing methodologies outside of proof assistants and would

not be faulted for opting to use those due to the fact that, in general, other tools offer more by way of

automation. In this section, we present work that highlights the great strengths of theorem provers in

formal verification: First is the ability to systematically, rigorously and flexibly build high-level, abstract

theories on top of lower-level tools such as language embeddings. This lets us do high-level reasoning

while keeping assumptions inherent to modeling to a minimum. Second and complementary to this is

the mathematically robust nature of the verification environment. We illustrate by example, noting that

many of these tools are brand new or still under development.

Take first SSCalc [130], a framework for verifying Solidity contracts that is built on top of Isabelle/Solidity

[129]. This work proposes a calculus for verifying Solidity programs, extending traditional calculi.

Crucially, because it is developed in a proof assistant the authors are able to formalize this calculus

and mechanically prove its soundness. This allowed them to build a verification condition generator

26

to facilitate formal proof about Solidity contracts. Crucially, the entire theoretical foundation of this

verification tool—from the language embedding to the high-level embedded calculus—are developed

within a formal setting, which allows for not only a formal proof of soundness but also a formalized

connection to bytecode from high-level semantics.

On the other hand, there are formalization projects that embed not only the semantics of languages,

but of that of the entire blockchain [52]. By far the most well-developed of these is ConCert [19], a

Coq-based tool which models the execution semantics of third-generation blockchains and which has a

certified extraction mechanism from Coq code into multiple smart contract languages [20], including into

CameLIGO, an intermediate-level language which compiles down to Michelson [16]. The embedding of

the full semantics of the blockchain enables ConCert to reason more rigorously, and with custom Coq

tactics, about smart contract execution by inducting along the execution trace of a blockchain. One can

also reason about arbitrary multi-contract systems, instead of reasoning about properties exclusively from

the perspective of a single contract; the latter is the standard for language embeddings (see e.g. Section

2.3.1) [145, 146].

2.3 Formal Specification and Verification in Proof Assistants

This brings us to the topic of formal specification in interactive theorem provers. To motivate our

discussion, we first consider some examples of actual, deployable smart contracts verified in the wild

with proof assistants. We see that formal specification is not a precise science. Indeed, one informal

specification will inevitably have multiple formal interpretations, and it is not at all obvious how to

compare formalizations on their correctness, or faithfulness to the intended contract design.

This problem is, of course, not unique to proof assistants; however, we argue that proof assistants offer a

unique solution to the problem of incorrect formal specification. In particular, we argue that by creating

high-level tools with low-level semantics (mirroring the high-level language embeddings of Section 2.2), we

can evaluate the correctness of high-level smart contract specifications with semantics in low-level proof

concepts. This facility is unique to ITPs, and we argue that it presents perhaps the most compelling

argument in favor of ITPs as a proof tool for smart contracts.

2.3.1 Smart Contracts Verified Interactively

We now consider various examples of smart contracts verified interactively, focusing on the formal

specification itself and our ability to evaluate whether it correctly captures the intended properties, both

high- and low-level.

27

2.3.1.1 Dexter2, a Formally Verified AMM

Dexter2 is a Tezos-based automated market maker (AMM) modeled off of Uniswap V1. It was formally

verified by three different groups in three distinct formal settings: in Mi-Cho-Coq, the low-level Michelson

embedding into Coq that we saw previously [3]; in K Framework, using the K Michelson formalization [9];

and in ConCert, the Coq-based tool which has an embedding of the execution semantics of a blockchain

and verified extraction [145]. Each of these were formalizations of the same informal specification [27].

All three formalizations include a functional specification. The K Framework and ConCert formalizations

also include high-level properties which we will discuss later. From the functional perspective, each formal

specification differs slightly in the properties formalized and verified. This is in part due to differing

formal models of contract execution—K Framework and Mi-Cho-Coq each have to make their own set of

assumptions about external contracts and the execution environment which ConCert doesn’t need to

make. For example, K Framework assumes that the evaluation of operations follows a depth-first search,

something that ConCert makes a point not to need to assume. Both K Framework and Mi-Cho-Coq

also make assumptions about safety properties of external contracts and their interaction with the

main Dexter2 contract, while ConCert formally implements token interfaces and formally models the

interacting contracts, avoiding such assumptions. That there are differences between the quality of the

three formalizations is made most obvious in the fact that ConCert was the only team to find logical

errors in the informal specification which could have lead to critical vulnerabilities, and which were

reported to the Dexter2 team and later rectified [145].

Even though the informal specification of Dexter2 is low-level, technical, and clear [27], there was still

sufficient nuance that made different formalizations not straightforwardly equivalent. We might ask

ourselves how to evaluate any of these formal specifications for correctness.

One way to evaluate a specification’s correctness is whether it implies the high-level properties and

behaviors. We have one example of a high-level correctness property that was verified by both the K

Framework and ConCert teams. The Dexter2 main contract keeps track of token balances in its storage

and those balances should reflect actual token balances recorded in the respective token contracts. It is

straightforward both to argue and see that this property of consistency between contract states is part of

the intended design, and thus qualifies as a property of contract correctness. Under some assumptions, the

K Framework team is able to verify a high-level safety property of state consistency between the contracts.

The ConCert team also articulated an analogous formal property aiming at the same safety property of

state consistency, showing novel formal techniques to reason about smart contract interactions.

Interestingly, the K Framework team articulated an additional high-level safety property which they

argue implies that it is impossible to profit by incorrect rounding. The statement of this property as part

of the formal specification draws on the reader’s intuitive understanding that an AMM should not allow

a trader to profit because the contract incorrectly priced a trade. While the property is not explicitly

part of the formal specification, most readers would agree that a violation of this rule would be unfair,

28

and thus constitute a bug.

It is proved by showing that the liquidity share price never decreases. Formally, they consider three state

variables XtzPool, TokenPool, and LqtTotal which are updated, respectively, to XtzPool′, TokenPool′,

and LqtTotal′ after an arbitrary operation. The formal invariant expressing this high-level property is

that the following formula always holds:

XtzPool′ × TokenPool′

XtzPool × TokenPool
≥

(
LqtTotal′

LqtTotal

)2

The K Framework team argues that, taken in conjunction with the consistency property mentioned

previously, the above invariant implies that: when adding or removing liquidity, users cannot mint more

liquidity shares or redeem more assets than they should be able to; that users cannot get more than they

should in trades; and that updating the token pool cannot be exploited despite the non-atomicity.

Of course, a formal justification for this intuitive argument is impossible within the K Framework without

substantially extending the formal model to include cryptoeconomic properties. Even so, the intuitive

properties which they claim to be the consequence of the articulated formal property are compelling

and arguably part of the inherent intent of Dexter2’s design. Providing an example where one of those

intuitive properties is violated would be a compelling example of a bug.

The contrast between these formalizations show us that formalizing a specification is not at all straightfor-

ward, that some are in some sense more correct than others, and that a specification can include high-level

properties which are not actually part of the informal specification, but which can be informally derived

by specification’s intent and design. In particular, it shows the sizeable role of intuition in the formal

specification process. These differences in formalization are certainly not unique to proof assistants. Due

to the nature of prose, informal specifications, any formalization necessarily requires making choices in

the formalization that cannot be deterministically derived from the informal specification. Indeed, this is

part of the reason that some promote writing formal specifications, even without verification–the process

of formalization forces the one formalizing to be extremely precise.

For us, the natural question is then whether there is any way to formally evaluate the correctness

of a formal specification or of contract design. This would consist of evaluating whether or not a

functional specification correctly articulates necessary and sufficient conditions for correct execution,

as well as articulating correct high-level properties implied by the design of the specification. The

answer is tentatively in the affirmative. First, we will see now that previous work has verified standalone

specifications in proof assistants, targeting correct design. Second, we argue that a formal analysis of

contract design can, in principle, be built inside ITPs without loss of rigor. we expand on both of these

points in Chapter 4

29

2.3.1.2 Djed, a Formally Verified Stablecoin

To that end consider Djed, a stablecoin protocol designed to behave like an autonomous central bank

and verified in Isabelle/HOL [240]. The designers of Djed were more interested in the verification of

correct design than verifying a particular implementation to be correct. This is because the design of

Djed is complex and such that correctness can be expressed in eight so-called stability properties, which

are precise, mathematical statements of desirable high-level economic behavior. The goal of formalization

then was to prove that the functional specification and design actually implied those eight high-level

economic properties.

The team reported positive results from the formalization. Despite having proved the eight stability

properties on paper about the protocol design before formalization, they reported that the formalization

uncovered issues like implicit and/or missing constraints (e.g. lower or upper bounds), assumptions in

the informal proofs, unnecessary assumptions, missing case distinctions, ambiguous wording, and missing

or unnecessary steps in proofs [240]. One of the formulae of the on-paper formulation was also shown to

be incorrect and had to be relaxed. It shows that protocol design is very difficult to adequately specify

and reason about on paper; the errors typically come in the form of unknown or incorrect foundational

assumptions, problems due to approximations, or inexhaustive case reasoning.

This is our first glimpse at the power of ITP-based verification to evaluate the correctness of a contract

specification. Because a contract implementation and specification are written in the same language

and setting, we can specify and reason about the specification in the same way that we reason specify

and reason about an implementation. In particular, had this analysis been done on a specific formal

specification with regards to which an implementation was proved correct, then that implementation

would also inherit the desired high-level properties.

We were fortunate in this case because the desired high-level, cryptoeconomic properties were easy to state

in a formulaic and mathematical way, so no additional theory had to be built up in order to rigorously

analyze the correctness of this particular contract’s design. This won’t always be true, and to be able to

state a wider range of desirable, high-level properties we will likely need to embed a theory of some kind

into our ITPs. Indeed, this is precisely the subject of recent work.

2.3.1.3 A Formally Verified Generic AMM Protocol

The authors of a recent paper [190] formalize a minimal state-machine model of a blockchain in Lean4, with

tokens, balances, and transfers as primitives, and study the behavior of an AMM from a game-theoretic

and cryptoeconomic standpoint. The main results are economic in nature: they first quantify (and prove)

a user’s gain from a trade on the AMM with an explicit formula; from there, they prove game-theoretic

results about the optimal strategy of a user of the AMM and “construct the optimal swap transaction

that a rational user can perform to maximize their gain, solving the arbitrage problem.” [190]

30

Similar to the previously-mentioned work on Djed, the goal of [190] (though not stated in these precise

terms) is to verify the specification, or design, of Uniswap V2 to be correct with regards to a cryptoeconomic

specification—a set of desirable game-theoretic and economic behaviors of the AMM. Principal among

these is the property that AMMs like Uniswap V2 respond to arbitrage efficiently, becoming effective

price oracles. In contrast to Djed, in order to state these properties rigorously some additional economic

primitives and theory had to be formalized into Lean4. Note that were there an underlying language

embedding (e.g. of Solidity) or a model of a blockchain in Lean4 (e.g. something like ConCert [19])

nothing would inherently impede us from formalizing the primitives of this theory in terms of contract

storage and transactions. This would give semantics of the high-level theory in terms of something with

which we could verify actual contracts; such contracts would inherit any high-level properties we can

prove in the high-level theory.

2.4 Proof Assistants and Embedded Theories

These examples have shown us that in an ITP we can formalize contracts, their execution environments,

their specifications, and theories through which we can reason about the economic behavior of those

specifications all in one single formal setting. Furthermore, the mathematically robust nature of an ITP

means that we can state arbitrary properties and formulate arbitrary theories to inform the process of

formal specification and verification. The process of reasoning about a contract’s high-level economic

properties, or indeed properties of its specification, mirrors the spectrum of low-, medium-, and high-level

language embeddings into proof assistants. As one moves up in the abstraction of the tool, to be fully

rigorous one must certify that the associated assumptions and primitives are themselves correct. We saw

in Sections 2.1 and 2.2 that this can be done within ITPs.

We argue that the natural conclusion of recent work to verify contract design within ITPs is to embed

high-level economic theories, within which one can specify and verify desirable high-level economic

properties of smart contracts, into a setting (e.g. one of the tools of Section 2.1) in which one can verify

actual contract code. If done correctly, the high-level theory can be given low-level semantics and can be

certified to be correct. This would highlight the unique mathematical strength of ITPs, in that in an ITP

one can state and prove mathematical theorems and arbitrary properties of programs. To our knowledge

no other formal setting can do this rigorously, so we argue that ITPs uniquely offer the capacity to

rigorously and interactively reason about the correctness of contracts as well as their specifications.

2.5 Conclusion

Interactive proof tools for smart contracts mostly consist of language embeddings into ITPs. Because in

an ITP users construct proofs themselves, proving properties of contracts with a low-level language can

31

be tedious. Embeddings of higher-level languages increase the trust base to include the compiler, but

with the benefit that reasoning is more tractable. However, due to the mathematically robust nature of

ITPs, one can prove a compiler to be correct, so high-level proof tools can be used rigorously on low-level

code so long as the details of the abstraction are certified to be correct.

It is this same property that gives ITPs a capacity to not only formally specify a contract, but to also

reason at a high level about the contract’s specification (or design). Because smart contracts most

frequently manage money, there is typically a set of desired economic properties which are implied by a

contract specification but not explicitly stated (and rarely verified), like those we saw in Chapter 1. If

done rigorously, high-level ITP-based tools to reason about contract design seen previously could at least

in principle be given semantics in a low-level language embedding or something of the kind. The setting

of an ITP means then that a contract proved correct with regards to a specification would automatically

inherit all of the high-level properties proved of its specification. This, we argued, is the unique potential

of ITPs, and is something that we explore in depth in the forthcoming work.

The setting and potential we have described for ITPs is vast, and something that we cannot fully realize

in the forthcoming work. However, we will take modest steps in that direction, and leverage the unique

mathematical strength of ITPs to introduce mathematical tools for specification and verification that

target the high-level and difficult-to-specify properties corresponding to each of the three challenges

outlined in Chapter 1. Each of these tools are high-level and mathematically abstract in nature, but

because they are implemented in ConCert they have semantics in smart contracts; and due to ConCert’s

verified extraction mechanism, they can be used to reason about actual, deployable smart contract code.

To our knowledge, no previous work has leveraged the mathematical setting of ITPs in the way we do

here for formal specification.

32

Chapter 3

Background

Before moving on to the core of our work, we give a short introduction to ConCert, the formal verification

tool in which this work is built. As we mentioned in Section 2.2, ConCert is a high-level tool which is an

embedding of the execution semantics of third-generation blockchains in Coq and which features verified

extraction. It is one of the most theoretically mature tools for ITP-based smart contract verification; for

the reader interested in the fine details of ConCert there is a maturing literature on the tool, including

[18, 51, 17, 144, 147, 20, 21].

In Chapter 2 we studied its most high-profile use case, the verification of Dexter2, an automated market

maker on the Tezos blockchain [144]. However, ITP-based verification for smart contracts is still finding

its footing [53]. The primary drawback to using ConCert is that one must manually implement a contract

to be verified within ConCert as in [144]; while ConCert features verified extraction and could thus could

be used for verification-first development, to our knowledge no deployed contract has been developed in

this way. Thus far non-ITP tools such as the Move Prover [66], K Framework [197], and the Certora

Prover [2] have been applied to the most high-profile use cases [33, 89].

We will give a high-level overview of ConCert in Section 3.1, and more Coq-specific details in Section

3.2. In each, we cover the implementation of the blockchain and of contracts, and we cover proof tactics

for properties and invariants of smart contracts. Section 3.2 is intended for readers who are familiar

with Coq but not with ConCert, and is designed to prepare the reader to read code blocks included in

the main body of this thesis. However, each chapter is prefaced with a theoretical, Coq-independent

description of the formalized work, so a working understanding of Coq and the specific details of ConCert

are not necessary to understand the work of this thesis.

33

3.1 ConCert From a High Level

Contracts are formalized in ConCert in the context of the execution semantics of a blockchain. This

means that in ConCert there are data types corresponding to the chain state, the execution environment,

and the context for any actions taken on chain. Actions include native token transfers, contract calls,

and contract deployments. Valid steps for the chain can either be: a valid action execution; an invalid

action which results in a revert case; the addition of a block, which adds actions to the action queue to

be executed; or a permutation of the action queue. Permutation of the action queue is for the sake of

generality, to accommodate blockchain implementations that use depth-first and breadth-first orders of

contract call execution [147].

A contract C is modeled in ConCert with four types: Setup, the data for contract initialization; Msg, the

type of messages a contract can receive; State, the contract’s storage; and Error, a type describing the

contract’s errors (typically N). Contracts also have a function governing contract initialization, C.(init),

and a function which governs calls to the contract, C.(receive). The init function takes a chain state,

the context of a call to initialize a contract, and something of the contract’s setup type. It returns a

result of the contract’s state after setup or it reverts with an error. The receive function takes a chain

state, the contract call context, a state, and a message (the payload of the contract call). It returns the

resulting contract state and a list of resulting actions to be made by the contract, or it reverts with an

error.

Once a contract is formalized, one can state and prove any properties about it that can be expressed

in Coq. One can prove a Hoare-style property by assuming a chain state, context, and contract state

that has some pre-defined properties and then stepping through valid steps of the blockchain. One can

prove an invariant about a contract through contract induction, a custom tactic that inducts over the

trace of a contract from initialization to an arbitrary reachable contract state. These methods make

ConCert extremely strong theoretically, as ConCert is not merely a language embedding, but a language

embedding in the context of the semantics of a blockchain.

We will use these proof tactics when reasoning about specific formalized contracts and examples in each of

Chapters 4, 5, and 6. We take advantage of the formalized blockchain semantics in Chapter 6 to formally

prove equivalences of contract traces.

3.2 Continuing in More Detail

In the remainder of this chapter we introduce the types and tactics of ConCert which are most relevant to

the forthcoming work. These are details for readers who are familiar with Coq but not with ConCert, and

are designed to prepare the reader to read code blocks included in the main body of this thesis. However,

each chapter is prefaced with a theoretical, Coq-independent description of the work to be done. So, for

34

any readers unfamiliar with Coq or ConCert, the main body of this thesis should still be accessible.

We first look at the type of smart contracts in ConCert, the Contract type, and at the types which

underlie the blockchain’s execution semantics. The latter abstracts the execution semantics at two levels:

the Environment type, and the ChainState type, each of which can be acted on, respectively, by the

Action and ChainStep types to model the progression of an executing blockchain.

We then discuss what contract specifications and proofs of contract invariants look like in ConCert,

covering ConCert’s central custom Coq tactic, contract induction. For any interested reader, the

codebase and thorough documentation can be found at the ConCert GitHub repository [51].

3.2.1 Smart Contracts in ConCert

In ConCert, smart contracts are abstracted as a pair of functions: the initialization function, init, which

governs how a contract initializes, and the receive function, receive, which governs how a contract

handles calls to its entrypoints.

1 Record Contract (Setup Msg State Error : Type) :=

2 build_contract {

3 init :

4 Chain -> ContractCallContext -> Setup ->

5 result State Error;

6 receive :

7 Chain -> ContractCallContext -> State -> option Msg ->

8 result (State * list ActionBody) Error;

9 }.

Listing 3.1: The type of smart contracts in ConCert is a record type with two functions: init, which

governs contract initialization, and receive, which governs contract calls.

To understand how smart contracts are modeled, let us briefly look at the Chain, ContractCallContext,

Setup, State, Msg, Error, and ActionBody types. In brief,

• The Chain type carries data about the current state of the chain, such as the block height.

• The ContractCallContext type carries information about the context of a contract call, including

the transaction sender, the transaction origin, the contract’s balance, the amount of the native

token (e.g. ETH or XTZ) sent in the transaction.

• The Setup type indicates what information is needed to deploy a contract.

• The State type is a contract’s storage type.

• The Msg type is the type of messages a contract can receive.

• The Error type is the type of errors a contract can throw.

35

• Finally, the ActionBody type is ConCert’s type of actions which can be emitted by a contract.

In ConCert, then, to define a smart contract one must define the Setup, State, Msg, and Error types

and produce init and receive functions. As we will see, a call to a smart contract modifies the state of

the blockchain by updating the contract state with the receive function and emits transactions of type

ActionBody. If a call to a contract results in something of type Error, the execution rolls back and the

Environment remains unchanged.

To deal with Coq’s polymorphism, ConCert also features a serialized contract type WeakContract,

though anyone doing contract verification work in ConCert should not ever encounter the WeakContract

type explicitly. We will see the WeakContract type briefly in various definitions relevant to the chain’s

execution semantics later on. Note that, while we omitted it in Listing 3.1, because contracts need to be

serialized, all four types parameterizing a contract must be serializable.

1 Inductive WeakContract :=

2 | build_weak_contract

3 (init :

4 Chain ->

5 ContractCallContext ->

6 SerializedValue (* setup *) ->

7 result SerializedValue SerializedValue)

8 (receive :

9 Chain ->

10 ContractCallContext ->

11 SerializedValue (* state *) ->

12 option SerializedValue (* message *) ->

13 result (SerializedValue * list ActionBody) SerializedValue).

Listing 3.2: The WeakContract type is a serialization of the Contract type used interally to ConCert to

deal with contract polymorphism. It is defined coinductively with the ActionBody type.

3.2.2 The Blockchain in ConCert

In ConCert, the blockchain and its execution semantics are modeled at multiple levels of abstraction,

which we go through here. Underlying everything is a typeclass, ChainBase, which represents basic

assumptions made of any blockchain. This is almost always abstracted away when reasoning about smart

contracts.

1 Class ChainBase :=

2 build_chain_base {

3 Address : Type;

4 address_eqb : Address -> Address -> bool;

5 address_eqb_spec :

6 forall (a b : Address), Bool.reflect (a = b) (address_eqb a b);

7 address_eqdec :> stdpp.base.EqDecision Address;

36

8 address_countable :> countable.Countable Address;

9 address_serializable :> Serializable Address;

10 address_is_contract : Address -> bool;

11 }.

12

Listing 3.3: The ChainBase typeclass, which represents basic assumptions made of any blockchain.

The basic assumptions of the ChainBase typeclass include an address type Address, which is countable

and has decidable equality, and which has a distinction between wallet address and contract addresses.

For example, on Tezos, this distinction can be seen in the format of the public keys, where contract

addresses are of the form KT... and wallet addresse are of the form tz....

At the next level of abstraction, we have the record type Chain, which represents the view of the

blockchain that a contract can access and interact with. The only information this type carries is the

chain height, the current slot of a given block, and the finalized height.

1 Record Chain :=

2 build_chain {

3 chain_height : nat;

4 current_slot : nat;

5 finalized_height : nat;

6 }.

Listing 3.4: The Chain type, which represents the view of the blockchain that a contract can access and

interact with.

From here, we have two types: the Environment type, which augments the Chain type to model the

information that a realistic blockchain needs to implement operations, and the ChainState type, which

augments the Environment type to include a queue of pending transactions that need to be executed.

The Environment type includes data about account balances, which contracts are at which addresses,

and the states of deployed contracts.

1 Record Environment :=

2 build_env {

3 env_chain :> Chain;

4 env_account_balances : Address -> Amount;

5 env_contracts : Address -> option WeakContract;

6 env_contract_states : Address -> option SerializedValue;

7 }.

Listing 3.5: The Environment type augments the Chain type to model the information that a realistic

blockchain needs to implement operations.

The ChainState type augments the Environment type to add a queue of outstanding transactions,

37

shifting our view from the chain’s internal environment at any given block height to an external view of

the chain itself, which executes transactions in a block.

1 Record ChainState :=

2 build_chain_state {

3 chain_state_env :> Environment;

4 chain_state_queue : list Action;

5 }.

Listing 3.6: the ChainState type augments the Environment type to include a queue of pending

transactions that need to be executed.

Finally, we have ChainBuilderType, which is a typeclass representing implementations of blockchains.

Part of the trust base of ConCert, then, is that the blockchain in question satisfies the semantics of the

ChainBuilderType.

1 Class ChainBuilderType :=

2 build_builder {

3 builder_type : Type;

4 builder_initial : builder_type;

5 builder_env : builder_type -> Environment;

6 builder_add_block

7 (builder : builder_type)

8 (header : BlockHeader)

9 (actions : list Action) :

10 result builder_type AddBlockError;

11 builder_trace (builder : builder_type) :

12 ChainTrace empty_state (build_chain_state (builder_env builder) []);

13 }.

Listing 3.7: The ChainBUilderType typeclass characterizes implementations of blockchains.

3.2.3 Blockchain Semantics in ConCert

The Environment and ChainState types can be acted on by actions which represent the blockchain

making progress by executing transactions in a block. Some of these can be initiated by users, and others

relate to the blockchain’s execution semantics. The possible actions that a user can initiate are modeled

by the Action and ActionBody types.

1 Record Action :=

2 build_act {

3 act_origin : Address;

4 act_from : Address;

5 act_body : ActionBody;

6 }.

Listing 3.8: The Action type, which includes the action’s origin, the sender, and the action’s body.

38

1 Inductive ActionBody :=

2 | act_transfer (to : Address) (amount : Amount)

3 | act_call (to : Address) (amount : Amount) (msg : SerializedValue)

4 | act_deploy (amount : Amount) (c : WeakContract) (setup : SerializedValue).

Listing 3.9: The ActionBody type, which specifies that a user can interact with the blockchain by

transferring funds, calling a contract, or deploying a contract.

Every action carries with it the origin, act origin, the sender, act from, and what kind of action it is,

whether it be a transfer, a contract call, or a contract deployment. From these we can build the types

which act on the Environment and ChainState types to model the blockchain making progress.

First, let us look at the ActionEvaluation type, which acts on the Environment type. The definition

of ActionEvaluation involves sixty-six lines of code, so we give a shortened version here.

1 Inductive ActionEvaluation

2 (prev_env : Environment) (act : Action)

3 (new_env : Environment) (new_acts : list Action) : Type :=

4 | eval_transfer :

5 forall (origin from_addr to_addr : Address)

6 (amount : Amount),

7 (* some omitted checks *)

8 ActionEvaluation prev_env act new_env new_acts

9 | eval_deploy :

10 forall (origin from_addr to_addr : Address)

11 (amount : Amount)

12 (wc : WeakContract)

13 (setup : SerializedValue)

14 (state : SerializedValue),

15 (* some omitted checks *)

16 ActionEvaluation prev_env act new_env new_acts

17 | eval_call :

18 forall (origin from_addr to_addr : Address)

19 (amount : Amount)

20 (wc : WeakContract)

21 (msg : option SerializedValue)

22 (prev_state : SerializedValue)

23 (new_state : SerializedValue)

24 (resp_acts : list ActionBody),

25 (* some omitted checks *)

26 ActionEvaluation prev_env act new_env new_acts.

Listing 3.10: The ActionEvaluation links two inhabitants of the Environment type to represent a

blockchain making progress by evaluating an action.

The ActionEvaluation type is parameterized by a previous environment prev env, and action act, a

new environment new env, and a list of actions new acts. This models a blockchain making progress by

39

evaluating an action, moving from the previous environment to a new environment.

Moving up to the ChainState type, we have the ChainStep type which acts on ChainState similar to

how ActionEvaluation acts on Environment, forming a chain. As before, we give a shortened version

of the type definition.

1 Inductive ChainStep (prev_bstate : ChainState) (next_bstate : ChainState) :=

2 | step_block :

3 forall (header : BlockHeader),

4 (* some omitted checks *)

5 ChainStep prev_bstate next_bstate

6 | step_action :

7 forall (act : Action)

8 (acts : list Action)

9 (new_acts : list Action),

10 ActionEvaluation prev_bstate act next_bstate new_acts ->

11 (* some omitted checks *)

12 ChainStep prev_bstate next_bstate

13 | step_action_invalid :

14 forall (act : Action)

15 (acts : list Action),

16 (* some omitted checks *)

17 ChainStep prev_bstate next_bstate

18 | step_permute :

19 EnvironmentEquiv next_bstate prev_bstate ->

20 Permutation (chain_state_queue prev_bstate) (chain_state_queue next_bstate) ->

21 ChainStep prev_bstate next_bstate.

Listing 3.11: The ChainStep type links two inhabitants of the ChainState type to represent a blockchain

making progress.

The ChainStep type is parameterized by two chain states, the previous state prev bstate, and the new

state, next bstate, and represents an update to the chain’s state. The chain’s state can be updated by:

updating the environment with an inhabitant of an ActionEvaluation type, as given by step action;

adding a block, given by step block; showing an action to be invalid, given by setp action invalid;

or reordering the blockchain’s transaction queue. Reordering the transaction queue is for the sake of

generality, so that proofs are independent of depth-first or breadth-first transaction execution orderings,

which can vary among chains.

Finally, the actual chained history of a blockchain is modeled through the ChainTrace type, which is a

linked list of inhabitants of ChainState, linked by inhabitants of ChainStep.

1 Definition ChainTrace := ChainedList ChainState ChainStep.

Listing 3.12: The ChainTrace type, which models the chained history of a blockchain, and can be used

to define the notion of a reachable chain state.

40

The ChainedList type models the chaining of points in some arbitrary type by a type of links, as follows.

1 Context {Point : Type} {Link : Point -> Point -> Type}.

2 Inductive ChainedList : Point -> Point -> Type :=

3 | clnil : forall {p}, ChainedList p p

4 | snoc : forall {from mid to},

5 ChainedList from mid -> Link mid to -> ChainedList from to.

Listing 3.13: The ChainedList type, described in the ConCert documentation as a proof-relevant

transitive reflexive closure of a relation.

As we will see, the semantics of blockchain execution makes it possible for us to reason along execution

traces of blockchains in a general way. In particular, the ChainTrace type gives us the notion of a

reachable state of a blockchain, defined as a state to which there is a trace from the empty state,

empty state.

1 Definition reachable (state : ChainState) : Prop :=

2 inhabited (ChainTrace empty_state state).

Listing 3.14: The definition of a reachable state of a blockchain.

Many proofs of contract invariants begin by assuming a reachable chain state.

3.2.4 Specification and Proof in ConCert

A contract specification is simply a list of propositions, written in Coq, about a smart contract. For

practical verification work, a specification typically references a specific smart contract. However, there is

nothing stopping us from abstracting over smart contracts, which we will do in later chapters.

For now, let us look at a simple example of contract definition and specification. The contract in question

will simply be a counter contract, which can increment and decrement a counter held in storage. We

start by defining the Setup, Msg, State, and Error types.

1 Definition Setup := unit.

2

3 Inductive Msg :=

4 | incr (n : N)

5 | decr (n : N).

6

7 Record State :=

8 build_state { stor : Z }.

9

10 Definition Error : Type := N.

Listing 3.15: The counter contract’s four types Setup, Msg, State, and Error.

41

We then define the entrypoint contracts and the contract’s main functionality.

1 (* entrypoint functions *)

2 Definition incr_funct (n : N) (st : State) :=

3 {| stor := st.(stor) + (Z.of_N n) |}.

4 Definition decr_funct (n : N) (st : State) :=

5 {| stor := st.(stor) - (Z.of_N n) |}.

6

7 (* main contract functionality *)

8 Definition counter_funct (st : State) (msg : Msg) : option State :=

9 match msg with

10 | incr n => Some (incr_funct n st)

11 | decr n => Some (decr_funct n st)

12 end.

Listing 3.16: The counter contract’s main functionality.

Finally, we can construct an inhabitant of Contract by defining init and receive functions.

1 Definition counter_init

2 (_ : Chain)

3 (_ : ContractCallContext)

4 (_ : Setup) :

5 option State :=

6 Some ({| stor := 0 |}).

7

8 Definition counter_recv

9 (_ : Chain)

10 (_ : ContractCallContext)

11 (st : State)

12 (op_msg : option Msg) :

13 option (State * list ActionBody) :=

14 match op_msg with

15 | Some msg =>

16 match counter_funct st msg with

17 | Some rslt => Some (rslt, [])

18 | None => None

19 end

20 | None => None

21 end.

22

23 Definition counter_contract : Contract Setup Msg State Error :=

24 build_contract counter_init counter_recv.

Listing 3.17: An inhabitant of the Contract type, defined by the init and receive functions.

Now that we have our contract counter contract defined, we can prove invariants about it.

For example, we may wish to verify the property that at any given blockchain state, the value of stor in

42

the state of counter contract will equal the sum of the incr calls, minus the sum of the decr calls. In

ConCert, we would write that statement like this:

1 Theorem counter_correct : forall bstate caddr (trace : ChainTrace empty_state bstate),

2 env_contracts caddr = Some (counter_contract : WeakContract) ->

3 exists cstate inc_calls,

4 contract_state bstate caddr = Some cstate /\

5 incoming_calls entrypoint trace caddr = Some inc_calls ->

6 (let sum_incr :=

7 sumN get_incr_qty inc_calls in

8 let sum_decr :=

9 sumN get_decr_qty inc_calls in

10 cstate.(stor) = sum_incr - sum_decr).

Listing 3.18: An invariant on counter contract, which says the state of the counter is always the sum

of all the incr calls minus the sum of the decr calls.

The theorem uses two functions, get incr qty and get decr qty, whose definitions we omit here but

which extract from an incoming call the quantity to be incremented or decremented. Translating this

theorem into prose, we would say something like:

Theorem 1 (counter correct). For all blockchain states bstate, contract addresses caddr, and

chain traces trace from the genesis block to bstate, such that caddr is the contract address of

counter contract, there exists a contract state cstate and incoming calls inc calls, such that cstate

is the state of counter contract at bstate, and inc calls is all the incoming calls found in trace,

such that: the value of stor in cstate is the sum of all the values of calls to the incr entrypoint, minus

the sum of all the values of calls to the decr entrypoint.

Shortened from there, this theorem states that at any reachable state, the value of stor in the storage of

counter contract is the sum of all the incr calls minus the sum of all the decr calls.

We can prove invariants like counter correct with contract induction, ConCert’s custom tactic

which inducts over a contract’s execution trace. To prove an invariant by contract induction one proves it

for a base case, contract deployment, and then for the inductive step, which consists of the various ways

a blockchain can make progress.

The contract induction tactic divides the proof of a contract invariant into seven subgoals. In the first

six subgoals, one must (re)establish the invariant after:

1. deployment of the contract (the base case),

2. addition of a block,

3. an outgoing action,

4. a nonrecursive call,

43

5. a recursive call, and

6. permutation of the action queue.

Finally, in each of these steps, one can introduce facts about the contract to help with the proof. These

must be proved in the seventh subgoal.

We use contract induction in each of the subsequent chapters to prove invariants in ConCert.

3.3 Conclusion

ConCert is a powerful tool for formally verifying smart contracts in Coq. It formalizes the execution

semantics of a blockchain, including the execution environment for smart contracts, valid steps, revert

cases, and the addition and permutation of a block. We will make use of these formalizations to not

only state and prove properties of contracts in each of the upcoming chapters, but to extend the formal

framework of ConCert and reason about relations and equivalences of contracts.

44

Chapter 4

Axiomatization and Metaspecification

In this chapter we address the first challenge to contract specification, detailed in Section 1.2.1.

4.1 Introduction

Poorly specified smart contracts can be vulnerable to attacks on faulty design [118]. Examples of such

attacks, typically targeting poor economic or governance design, are alarmingly common, costing the

equivalent of billions of US dollars in cryptocurrency losses each year [40, 245]. (See also Section 1.2.1.)

The nature of these attacks means that they are rarely targeted by formal methods, as smart contracts can

be correct, but with regards to a faulty specification [46, 186]. Furthermore, many vulnerabilities relating

to poor economic or governance design are out of scope of a specification [53]. So, while specifications

attempt to target these properties, anyone formally verifying said contracts can only make informal

arguments to justify many design choices as correctly capturing the intended properties and behaviors of

the smart contract in question.

We are thus in need of a paradigm shift in how we specify and verify smart contracts which allows for a

rigorous and accurate notion of a contract specification’s correctness, especially with regards to properties

intended by it, but ultimately out of its scope. We advocate here for an approach to formal contract

specification with interactive theorem provers (ITPs) consisting of axiomatization and metaspecification.

First, we note that for ITP-based verification, a consistent specification forms the basis for an axiomatized

theory. This is because a specification is a set of propositions which characterize a contract’s design and

structure. We can thus state these propositions as a specification and study the behavior of arbitrary

contracts satisfying that specification. Importantly, to reduce the burden of formally verifying any given

contract, specifications should be minimal [230]. This is contract axiomatization.

45

From there we formally study the implications of a contract specification via a metaspecification. The

metaspecification is to a specification what a specification is to an implementation. It consists of properties

which justify the specification as being complete, or implying the correct desired contract behavior, and can

include properties intended by, but out of scope of, the contract specification. A contract specification’s

correctness, then, depends on whether it is consistent, admitting a correct implementation, and in some

sense complete, conforming to its metaspecification.

We make the specification-metaspecification distinction because the cost of formally verifying software

can already be prohibitive, and we wish to address issues of poor specification in formal methods without

unnecessarily augmenting the burden of verification on any given smart contract. By treating the

specification as a contract axiomatization, we keep it minimal while expanding the formal study of smart

contract behavior, adding to the security guarantees of formal methods without increasing the burden of

verifying a specific implementation once the specification is formalized.

We proceed in this chapter as follows. In Section 4.2, we give historical context to this problem and

discuss related work. In Section 4.3, we discuss the problem of correct specification. In Section 4.4 we

discuss our proposed framework of contract axiomatization and metaspecification. In Section 4.5, we

illustrate with an example contract. In Section 4.6, we justify this paradigm as a solution to our issue of

(in)correct specification. In Section 4.6.1, we discuss the relationship of our work to refinement types. In

Section 4.7, we discuss limitations and future work. In Section 4.8, we conclude.

4.2 Related Work

Limitations of formal methods are well-established [81, 118, 215]. We know that formal methods cannot

guarantee perfect software [97], in part because of theoretical limits of a causal model of a physical process

[44, 78]. As such, formal methods should be used in conjunction with other techniques to ensure software

security which compensate for limitations inherent to formal methods [45, 103].

Design and formation of a specification has long been considered in the domain of informal techniques, out

of the bounds of formal methods [92, 118]. The literature rightly points out that the infrastructure required

to reason about software specification is vast. In order to reason about a specification’s correctness, one

must have a formal model of its execution model and—intractibly for most software—the social and

ecological environment in which that software operates and executes, consisting of different types of users

as well as society and the natural environment around them [118]. The limitation of formal methods due

to the difficulty of forming a correct specification has long been recognized [92].

Even so, there have been efforts of varying formality to address the issue of (in)correct specification.

Firstly, it is often argued that formalizing a specification alone, due to the precision required, helps ensure

a specification’s correctness by clarifying details and preventing inconsistencies [45, 133]. Specification

languages are also frequently designed to target certain domain-specific properties in order to ease the

46

translation between prose and formal specification [218].

There is also emerging work which attempts to formally justify the correctness of a contract specification.

For example, one study tests the strength of a contract specification by mutation testing to identify any

pathological yet correct (per the specification) behavior of Ethereum smart contracts [187]. Similarly,

the developers of a formally verified stablecoin, Djed, used techniques such as mutation and unit testing

to identify potentially pathological behavior of the specification. They then targeted these behaviors

with formal verification, in Isabelle and using SMT solvers, to justify the robustness of the contract

specification [239].

These are good examples of developers considering the correctness of their specifications, but crucially

the properties they proved about these specifications are articulated and proved ad hoc. Testing and

intuition ground the conceptual framework from which they derive the results to be proved. In particular,

they are not derived systematically via a theory of some kind. Without a systematic framework, one has

no rigorous notion of completeness—whether the propositions proved about a specification are sufficient

to guarantee it to be correct.

Finally, there are some verification efforts which take a stronger theoretical approach to smart contract

specifications, but these do not reason about deployable or executable code. Consulting and auditing

firms such as Gauntlet [8] and 20squares [1] perform statistical, economic, and game-theoretic analysis

on contract specifications [38, 90], but crucially such analyses are not present in any setting of formal

verification.

Our work is to lay the theoretical foundations for a systematic framework that can evaluate the correctness

of a smart contract specification based on cryptoeconomic analysis, and which brings a high-level approach

of cryptoeconomic reasoning into a setting of verification on contracts which can be deployed and

executed. The purpose of this work is to improve the efficacy of formal methods against attacks on poor

cryptoeconomic design.

4.3 The Problem of (In)Correct Specification

Contract specifications almost never feature economic properties, despite the fact that the primary use

case for smart contracts is as economic or financial infrastructure. Instead, the specifier goes through

an informal translation process from a high-level, informal business or economic specification into a

technical specification [217]. This informal process can be erroneous, resulting in a specification that fails

to capture the intended cryptoeconomic properties and contract behaviors—in other words, an incorrect

specification.

Consider the specification of an automated market maker (AMM). From its inception, its design is to

facilitate an efficient market, with efficient price discovery [49]. Bonding curves, e.g. the first and most

47

fundamental

xy = k, (4.1)

were put forward from classical economics as having desirable market properties. However, reading

through the specification of an AMM—take for example Dexter2 [27], a Tezos-based AMM, its formal

counterparts [50, 110, 145], or a generic formal specification for AMMs using equation 4.1 as the bonding

curve [243]—does little to convince us that the resulting smart contracts do indeed exhibit the desired

high-level, economic properties of an efficient market-maker.

This is because contract specifications tend to be low-level in nature, focusing on contract interface, storage,

and functional descriptions of entrypoint functions. High-level, cryptoeconomic properties are assumed

to emerge from the specification, but they are difficult to formally justify. For some examples of such

properties, properly incentivizing liquidity providers with fees, without disrupting other cryptoeconomic

features of the AMM, is a highly complex topic [15, 75, 83, 84, 99], and not at all obvious to be correct

from a typical contract specification. Indeed, assurances of desirable cryptoeconomic behavior for AMMs

using equation 4.1 as the bonding curve were largely provided after the original Uniswap contracts were

specified and deployed, e.g. in [14].

We can see that smart contract developers ubiquitously use an informal translation process, from high-level

cryptoeconomic or business logic to a technical specification, to specify their smart contracts. In contrast

to Uniswap, a resounding success, many instances of contract specification result in catastrophic losses

due to incorrect design. Examples include Beanstalk [71], Mango Markets [126, 212], the Spartan Protocol

[48, 109], Pancake Bunny [47, 96, 106, 181], and a seemingly countless stream of others [40, 245].

Frustratingly, aside from the benefits of producing a formal specification, formal methods are of limited

use to resolve these vulnerabilities because they are not vulnerabilities of incorrect code, but of incorrect

specification. Since formal methods are an important avenue toward high-assurance software, and are

of particular relevance to smart contracts due to contract immutability [38, 217], we are in need of a

paradigm shift in how we specify and verify smart contracts in order to adequately address vulnerabilities

due to incorrect specification.

Our goal in this and future work is to develop rigorous tools for reasoning about the correctness of smart

contract specifications in an ITP-based formal setting. In this paper, we will focus on this problem as it

relates to a contract’s cryptoeconomic properties. We call a contract specification correct if any contract

satisfying that specification also exhibits the associated and desired cryptoeconomic properties. The

framework that we put forward is one of contract axiomatization and metaspecification.

48

4.4 Contract Axiomatization and Metaspecification

The essential idea of contract axiomatization and metaspecification is to specify a contract’s essential

features in its specification (a contract axiomatization) and then to formally study the implications,

cryptoeconomic or otherwise, of that specification via the metaspecification. This isolates the minimal

conditions that must be true of a contract from the properties and behaviors that necessarily follow,

emulating standard mathematical reasoning. Importantly, this allows us to minimize the size of a contract

specification, and thus the burden of formally verifying any particular implementation, while improving

our understanding of that contract’s cryptoeconomic behavior. Formal specifications remain low-level

and technical in nature, but through the metaspecification we are able to express and reason about the

high-level, cryptoeconomic properties of the specification.

4.4.1 Contract Axiomatization

An effective specification abstracts the essential pieces of a contract’s design and interface. It should be

consistent (unambiguous) and complete (fully descriptive of contract behavior) [55, 230]. In particular,

we should be able to deduce the outputs of any contract call by the specification, given the inputs. If

it is well-defined in an ITP, a formal specification should be able to be stated as a predicate on smart

contracts. In ConCert, the contract type is parameterized by a contract’s setup, message, state, and error

types, and a specification S then has the following form:

S : forall (C : Contract Setup Msg State Error), Prop.

The art of specification holds a tension between saying enough, so that implementers do not choose

unacceptable implementations, and not saying too much, which can limit the design freedom of the

implementer [230]. From the perspective of formal methods, there is further pressure to make the

specification as concise as possible, since formal verification is difficult and costly due to the time and

expertise required [232].

For ITP-based verification, we can see right away that a specification, a list of propositions we might

hope to prove about a particular implementation, mimics the practice of axiomatization in mathematical

theories [122]. An example of axiomatization in mathematics, a group is defined by a set of axioms: it is a

set, with an associative operation, an identity element, and inverses [241]. Given a set with an operation,

one can prove or disprove whether or not that set conforms to the axioms of a group by proving the

operation to be associative, demonstrating inverses, and producing the identity.

We can make an analogy, where the axioms defining a group are the analogue to a specification, and

any particular group is analogous to a specification-compliant implementation. Indeed, in ITP-based

verification, these are in actuality the same practice: a specification is a list of propositions (axioms), and

an implementation is a well-defined mathematical object which may or may not satisfy those propositions.

49

We might, then, resolve the tension of specification in an ITP-based formal setting as mathematicians do:

study, refine, and minimize the required axioms (specification) by proving theorems about the axioms

and studying their formal implications. For this, we have the metaspecification.

4.4.2 Metaspecification

Given a specification, its metaspecification is a set of properties either of the specification itself or of the

implications of that specification. The goal of a metaspecification is to clearly define what it means for a

specification to be complete, thereby giving us a formal way to demonstrate that the formal specification

(axiomatization) correctly captures the intended behaviors of a specification from multiple levels of

analysis.

We therefore study the implications of a specification. Given a specification S, stated as a predicate on

contracts, we consider an arbitrary contract C and a proof

C conforms to S : S(C).

By assuming only the witness C conforms to S in our context, any theorems we prove apply to all

contracts satisfying the specification S.

As we will see by example in the upcoming section, a metaspecification can include desired, high-level

cryptoeconomic properties. Importantly, proving properties via the metaspecification does not add to

the burden of verifying any given implementation, since by definition contracts conforming to a correct

specification automatically inherit all the properties of the metaspecification.

For example, consider the standard specification of an ERC20 token contract [224, 183], which defines

contract storage, interface, and functionality for a basic token contract. In addition to this standard,

every token contract has an associated tokenomics, which includes rules governing minting, burning,

token issuance or buy-backs, maximum supply, etc [87]. A token contract’s tokenomics are essential to

its correct functionality, since tokens typically attempt to capture value of some kind or regulate the

functionality of some other smart contract, e.g. the governance tokens for a DAO [227], or the LP tokens

for an AMM [234].

Within the framework of axiomatization and metaspecification, we can study a token contract specification

by formalizing it as a predicate P on contracts and then stating and proving properties relevant to its

tokenomics. The specification minimally includes specific rules governing minting and burning, including a

maximum supply of tokens (if any). The metaspecification then might include some set of game-theoretic

or incentive-based rules governing minting and burning hold, e.g. as articulated in [28], proving that

the token contract conforms to some given tokenomics. Since the specification languages for ITP-based

verification can state arbitrary properties, in principle we could state and attempt to prove anything we

wish [198].

50

Indeed, we might wish to formalize a theory of DeFi and AMMs, a formal counterpart of previous work

on the subject by Bartoletti et al. [32] and Angeris et al. [14]. Bartoletti et al. formally derive and

prove desirable, high-level, economic properties of AMMs via a labelled state transition system. This

work targets the so-called arbitrage problem, formally proving that the pricing functions of Uniswap-style

AMMs respond, from an economic point of view, appropriately to market actions by rational arbitrageurs.

In particular, this is a property explicitly aimed for by the earliest AMM specifications (e.g. [49]) for the

sake of market efficiency, but to our knowledge has never actually featured in an AMM’s specification.

By way of an illustrating example in the following section, our argument is that ITP-based formal methods

should consider smart contracts analogously to axiomatized, mathematical objects. Returning to the

mathematical analogy, in mathematics, like in formal specification, a set of axioms must be consistent, in

that they do not imply a contradiction, and complete, in that they correctly characterize the intended

mathematical phenomenon [185]. That the group axioms are correct is confirmed by the emergent

behavior of groups, explored mathematically through the resulting theory. Importantly, the axioms of

groups were carefully chosen to say enough to capture the intended mathematical structure without

overspecifying—precisely the same tension exhibited in specification. To this end we proceed with an

example of a formalized AMM specification and metaspecification.

4.5 Example: Formalizing Structured Pools

We illustrate the process and utility of axiomatization and metaspecification with a specific AMM contract.

We have formalized1 a structured pool contract, its specification, and its metaspecification. We also have

formal proofs that the contract is correct with respect to its formal specification, and that the formal

specification is correct with regards to its metaspecification. With this example, we show the AMM

specification to exhibit desirable, high-level cryptoeconomic properties. Furthermore, parts of the formal

specification can only be derived in reference to the metaspecification.

We will omit most of the background and details of the structured pool contract, as they are not essential

to this case study. But for full, mathematical details of the specification and metaspecification of the

structured pool contract, see Appendix A. For the background on the issue of fungibility for tokenized

carbon credits which motivates the structured pool contract, see Appendix B.

4.5.1 The Formal Specification, or Contract Axiomatization

The structured pool specification, given in mathematically precise detail in Appendix A, is an AMM

specification split in three parts: contract storage, interface, and entrypoint functions. The first two are

type specifications, which we handle in Coq by way of typeclasses. The last are functional specifications,

1The full formalization of a structured pool contract, its specification, and metaspecification can be found at the FinCert
repository: https://github.com/dhsorens/FinCert

51

https://github.com/dhsorens/FinCert

which we can write using pre- and post-conditions. The formal specification can then be summarized into

a predicate on an arbitrary contract C,

is structured pool : forall C, Prop.

A proof of is structured pool indicates that the storage, interface, and entrypoint functions of C all

conform to the specification.

4.5.1.1 Storage

According to the specification, contract storage must contain the following data: exchange rates for each

constituent token (used for pooling and trading rates), the quantity of each token held in the pool, the

address of the pool token contract, and the number of outstanding pool tokens. We can specify this by

using a Coq typeclass, requiring that the storage type of a structured pool contract have functions which

reveal each of these data points.

1 Class State_Spec (T : Type) := {

2 (* the exchange rates *)

3 stor_rates : T → FMap token exchange_rate ;

4 (* token balances *)

5 stor_tokens_held : T → FMap token N ;

6 (* pool token data *)

7 stor_pool_token : T → token ;

8 (* number of outstanding pool tokens *)

9 stor_outstanding_tokens : T → N ;

10 }.

Listing 4.1: The formal typeclass characterizing the storage type.

4.5.1.2 Interface

The interface consists of at least three entrypoints: POOL, UNPOOL, and TRADE. These are for pooling

liquidity, withdrawing (unpooling) liquidity, and trading individual carbon credits, respectively. We

formalize the payload data for each entrypoint into three types: pool data, the payload type for POOL;

unpool data, the payload type for UNPOOL; trade data, the payload type for TRADE; other entrypoint,

an abstract type representing one, many, or no additional entrypoints.

The typeclass characterizing the interface requires that each of these types are legitimate payload types.

1 Class Msg_Spec (T : Type) := {

2 pool : pool_data → T ;

3 unpool : unpool_data → T ;

4 trade : trade_data → T ;

52

5 (* any other potential entrypoints *)

6 other : other_entrypoint → option T ;

7 }.

Listing 4.2: The typeclass characterizing the interface type.

Finally, we require that any incoming message be either to the POOL, UNPOOL, TRADE, or other entrypoints.

1 Definition msg_destruct contract :=

2 forall (m : Msg),

3 (exists p, m = pool p) ∨

4 (exists u, m = unpool u) ∨

5 (exists t, m = trade t) ∨

6 (exists o, Some m = other o).

Listing 4.3: The payload of any legitimate contract call is the image of one of: pool, unpool, trade, or

other.

4.5.1.3 Entrypoint Functions

Entrypoint functions are characterized with functional specifications. There are twenty-four properties of

the full entrypoint specification, encoded as propositions. Some of the key properties are:

1. pool increases tokens held, which states that a successful call to POOL increases the tokens

pooled,

2. unpool decreases tokens held, which states that a successful call to UNPOOL decreases the tokens

pooled,

3. trade pricing formula, which specifies the formula used to price trades, and

4. trade update rates formula, which specifies how exchange rates update in response to trades.

Numbers 3 and 4 listed above are parameterized by functions that calculate trades and update exchange

rates, respectively calc delta y and calc rx’. This is all we need to fully specify the AMM in

question, but there are two ambiguities in the formal specification which can only be clarified by the

metaspecification.

The first relates to how trades are priced, specified in the pricing formula of trade pricing formula.

As is typical in prose specifications of AMMs that price trades along a convex curve, or indeed for any

financial contract involving mathematical calculations, the structured pool specification does arithmetic in

rational or real numbers. However, any implementation necessarily uses arithmetic with natural numbers

which estimate rational or real numbers (typically at 6 or 9 decimal points of precision) [214]. We must

53

decide, then, whether to estimate from above, below, or some combination of the two depending on the

context. At the heart of the question is how to estimate the calculations in such a way that all the desired

cryptoeconomic behaviors of the contract are satisfied. This is thus a question for the metaspecification.

The second is the functional specification of the other entrypoint, which is a placeholder in the specification

for any entrypoints other than the three explicitly specified. The structured pool specification allows

for other entrypoints, but none that fundamentally change the functionality of the contract. However,

this is only an intuitive requirement, difficult to formalize. From the specification it is not obvious what

functionality is and is not permitted of any other entrypoints. We must restrict the other entrypoint so

that any additional entrypoints, whether they be to add a governance layer or something more inocuous

like an entrypoint for updating metadata, do not sabotage the contract’s correct cryptoeconomic behavior.

Again, we can answer this within the context of the metaspecification, enabling us to give a precise

functional specification of the other entrypoint.

4.5.2 The Formal Metaspecification

The metaspecification consists of six cryptoeconomic properties derived from previous work which elucidate

desirable economic behavior of AMMs [13, 14, 32, 235]. The properties we have formalized here are those

proved in the original, informal AMM specification of Appendix A, and are designed to justify the AMM

specification to be cryptoeconomically correct. Informally, these are:

1. Demand sensitivity : in a trade, the relative price of the token traded in decreases, and that of the

token being traded out increases, simulating the principle of supply and demand from classical

economics.

2. Nonpathological prices: the price of an asset can never reach zero or go negative.

3. Swap rate consistency : trading cost must be nonnegative, so that it is impossible to make a sequence

of calls to the TRADE entrypoint and output more in assets than were traded in initially.

4. Zero-impact liquidity change: pooling or unpooling tokens (depositing or withdrawing liquidity)

must not affect trade prices.

5. Arbitrage sensitivity : if the price of a token differs on an external AMM from this one, a rational

arbitrageur will either equalize the prices by trading, or drain the structured pool of that token.

6. Pooled consistency : the total value of the outstanding pool tokens is equal to the value of the pool.

Together, these properties are designed to encapsulate the intended cryptoeconomic behavior for this

AMM (see Appendix A for full details). In particular, demand and arbitrage sensitivity target the

desired property that the AMM facilitate an efficient (i.e. price-finding) market. Swap rate consistency

ensures that there are no arbitrage opportunities internal to the AMM itself. Pooled consistency and

54

nonpathological prices are the invariants of the contract state, while the rest pertain to specific entrypoint

functions. To illustrate, see the formalized statements of properties 2 (nonpathological prices) and 6

(pooled consistency) in listings 4.4 and 4.5, respectively. The correspondence between Coq code and prose

is illustrated in the comments.

1 Theorem nonpathological_prices bstate caddr :

2 (* Forall reachable states with

3 our contract at the address caddr, *)

4 reachable bstate →

5 env_contracts bstate caddr =

6 Some (contract : WeakContract) →

7 (* ... where contract state is cstate, *)

8 exists (cstate : State),

9 contract_state bstate caddr = Some cstate ∧

10 (* For a token t_x in T and rate r_x, *)

11 forall t_x r_x,

12 (* if r_x is the exchange rate of t_x,

13 then r_x > 0 *)

14 FMap.find t_x (stor_rates cstate) =

15 Some r_x → r_x > 0.

Listing 4.4: The formalization of Property 2, Nonpathological Prices.

1 Theorem pooled_consistency bstate caddr :

2 reachable bstate →

3 env_contracts bstate caddr =

4 Some (contract : WeakContract) →

5 exists (cstate : State),

6 contract_state bstate caddr = Some cstate ∧

7 (* The sum of all the constituent,

8 pooled tokens, multiplied by

9 their value in terms of pooled tokens,

10 always equals the total number of

11 outstanding pool tokens. *)

12 suml (tokens_to_values

13 (stor_rates cstate)

14 (stor_tokens_held cstate)) =

15 (stor_outstanding_tokens cstate).

Listing 4.5: The formalization of Property 6, Pooled Consistency.

To our knowledge, these types of economic properties do not feature in any other contract specifications,

informal or formal, but as we have pointed out they are critical to evaluating the correctness of the

55

specification with respect to our cryptoeconomic intent. That they are formally verified to be true of

the structured pool specification assures us that the design itself is correct. Importantly, any contract

satisfying the functional specification of Section 4.5.1 also satisfies these economic properties without

requiring any further proofs.

Furthermore, the two ambiguities in the formal specification of Section 4.5.1 can only be clarified in

the context of the specification’s cryptoeconomic properties. These are: verifying the pricing formulae

to be correct using natural-number arithmetic, rather than rational or real numbers; and formally

specifying minimal requirements on any additional entrypoints such that the economic properties of the

metaspecification are not violated. We expound on both.

4.5.2.1 Rational to natural-number arithmetic

The aspects of the informal specification (see Appendix A) which require the metaspecification due to the

fact that smart contracts use natural-number, rather than rational, arithmetic are these: first, how trades

are priced, and second, how token exchange rates are updated by trades. Both of these implicitly use

properties of rational numbers which are not true of natural numbers: that between 0 and any positive

rational number r, there are infinitely many rational numbers, and that every nonzero rational number

has an inverse. See in particular Figure A.1 of the structured pool specification, which specifies how

trades are to be calculated.

Because any implementation necessarily uses natural numbers for arithmetic, in the formal, functional

specification of the trade and exchange rate functions we must decide which properties of rational

arithmetic must be preserved in our formalization into natural-number arithmetic. In the structured

pool’s formal specification, this resulted in seven formal properties on the abstract functions calc delta y

and calc rx’ which are, respectively, the functions that price trades and update token exchange rates

(see Listing 4.6). These include theoretical bounds on trade slippage, exchange rates, and that there

be no theoretical upper bound on the output of trades. The specification allows for any pricing and

rate-updating formulae which conform to those seven formal properties.

1 (* ... *)

2 (* specification of calc_rx’, calc_delta_y *)

3 update_rate_stays_positive ∧

4 rate_decrease ∧

5 rates_balance ∧

6 rates_balance_2 ∧

7 trade_slippage ∧

8 trade_slippage_2 ∧

9 arbitrage_lt ∧

10 arbitrage_gt ∧

11 (* ... *)

56

Listing 4.6: An exerpt of the formal specification of a structured pool contract consisting of the required

properties of calc rx’ and calc delta y.

Importantly, this shows that the solutions to issues such as rounding errors in calculating trades and

exchange rates have solutions from within a cryptoeconomic context. This is particularly relevant

considering recent costly attacks due to rounding error in smart contracts, e.g. DFX Finance [107] and

KyberSwap [58].

4.5.2.2 Specifying the other entrypoint

The metaspecification also governs the behavior of any additional entrypoints, such as one for a governance

mechanism or something more inocuous like for updating metadata. Two properties—nonpathological

prices and pooled consistency—are high-level invariants of the contract, in contrast with the other

properties of the metaspecification which are entrypoint-specific. In particular, they are the only

invariants on contract state, so they dictate the admissible behavior of any additional entrypoint: We

retain the desired cryptoeconomic behavior of our AMM so long as no additional entrypoint does not push

prices to a nonpositive value, or make the total value of outstanding pool tokens unequal to the value of

the pool. For example, a specification that requires that any additional entrypoints not alter rates, token

balances, or outstanding pool tokens satisfies the metaspecification, though the metaspecification may

allow for more varied entrypoint behavior.

1 (* ... *)

2 (* specification of all other entrypoints *)

3 other_rates_unchanged C ∧

4 other_balances_unchanged C ∧

5 other_outstanding_unchanged C ∧

6 (* ... *)

Listing 4.7: An exerpt of the formal specification of a structured pool contract consisting of the required

properties of any additional, unspecified entrypoint.

4.6 (In)Correct Contract Specifications

From our example we can observe various benefits to formalizing contract specifications and metaspecifi-

cations.

1. Formally specifying the high-level properties intended by the specification gives the benefits of

clarity and rigor inherent to formalization, analogous to the benefits of formalizing a specification

57

on an implementation.

2. The metaspecification can inform, and evolve with, the specification, just as the specification does

with an implementation.

3. Choices inevitably made when formalizing a specification can be proved correct with reference to a

metaspecification.

4. Once formalized, the metaspecification adds to the security guarantees of the formal specifica-

tion without increasing the burden of formally verifying any particular implementation, since

an implementation proved correct with regards to the specification inherits the properties of the

metaspecification without requiring additional proof.

In particular, the metaspecification achieves our goal to develop rigorous tools for reasoning about the

correctness of smart contract specifications in an ITP-based formal setting: It forces us to formalize the

contract specification as a standalone mathematical object, and then to clearly and formally articulate

the intended properties of the specification and contract design.

This example also gives us an initial evaluation metric on the efficacy of a metaspecification to prevent

attacks on poor cryptoeconomic design. As we mentioned before, any smart contract facilitating trades

must inevitably round when pricing trades. Correct rounding is actually a hard problem and has lead to

many vulnerabilities in smart contract design. The industry rule of thumb is to round in favor of the

smart contract, but even that breaks sometimes and can be a source of catastrophic loss. In our example,

the metaspecification fully clarified which way to round when implementing the pricing function. Indeed,

the answer to this engineering question is inevitably rooted in the desired cryptoeconomic behavior.

Even so, any genuine evaluation on the efficacy of a metaspecification to prevent attacks on poor

cryptoeconomic design will depend on the sophistication with which we are able to state and verify

cryptoeconomic properties, which leads us to current limitations and future work.

4.6.1 Relationship to Refinement Types

The work of this chapter is reminiscent of the practice in type theory of using refinement types, often

for ease of formally reasoning about code or for more accurate static analysis [39]. Refinement types

have been developed in various languages, e.g. ML [82] and Haskell [223], with the goal of improving the

language’s type system with more precision, enabling function definitions avoid the need to deal with

tedious error cases with type definitions instead of function definitions. They can also allow for proof

reuse [56], something we will see more of in Chapters 5 and 6.

Refinement types are simply types with an inclusion predicate. For example, the type of natural numbers

N can be refined to the type of even natural numbers with a predicate λn.((n mod 2) == 0); and with

refinement can define a partial function on N restricted to even natural numbers. Comparing refinement

58

types to our work here, an implementation can be seen as a refinement of the specification, and the

specification as a refinement of the metaspecification. That is, at each level we define a class of possible

inhabitants and we narrow that class as we go from metaspecification all the way down to extractible

implementation.

While the goals of this chapter resemble those of refinement types—enabling more effective formal

reasoning—the analogy seemingly ends there. Refinement types are a method of encoding specification in

the type system of a language, enforcing function preconditions at the type level and allowing for the

definition of partial functions. Refinements add precision to code. In the case of a metaspecification, the

direction of logical travel is reversed: we start more specialized and move to a more general setting with a

metaspecification in order to formalize the logical context of the specification and ensure that it is correct.

4.7 Limitations and Future Work

The example given here is preliminary and illustrative. In order to more fully realize these benefits

we should lay stronger foundations from which to derive desirable cryptoeconomic properties of smart

contracts. We might also consider similar work in other formal settings.

4.7.1 Formal Theories of DeFi and AMMs

We mentioned before that substantial work has already been done to develop theories of DeFi and AMMs.

The metaspecification of this paper was informed by the work of Angeris et al. [13, 14], Bartoletti et al.

[32], and Xu et al. [235] to characterize the desirable cryptoeconomic properties of AMMs which price

trades along a convex curve. However, rather than rigorously deriving them from within a theory if DeFi

and AMMs embedded into ConCert, we formalized the statements of the metaspecification ourselves.

The process of metaspecification could be made more rigorous if we had a formalized theory of DeFi and

AMMs from which to derive our desired cryptoeconomic properties.

The cited studies are not the only attempts to systematically study the cryptoeconomic behavior of

blockchains and smart contracts. There is a growing literature on cryptoeconomics more generally, e.g.

[116, 117, 225]. We are hopeful that the growing literature will provide strong, theoretical foundations of

cryptoeconomics which can be applied to specification design and verification.

To aid in the rigorous formation of contract metaspecifications, we hope to start from first principles and

develop a Coq-native cryptoeconomic theory in ConCert, which fomralizes token and AMM primitives as

abstract specifications [32], and operations for owning, transferring, and trading resources [46]. This is

doable in ConCert because it models the semantics of a blockchain embedded in Coq, and so arbitrary

theories can be constructed, including those that reason about the cryptoeconomic incentives relating to

the blockchain itself. From such a theory we could make a formal study of cryptoeconomics, and provide

59

strong foundations for contract metaspecifications.

4.8 Conclusion

Poorly specified smart contracts are vulnerable to attacks on faulty design for which formal methods

typically have no answer. We are in need of a paradigm shift in how we specify and verify contracts so

that we can rigorously consider a contract specification’s correctness.

We propose a framework for formal specification in interactive theorem provers consisting of contract

axiomatization and metaspecification. This framework treats contracts as well-defined mathematical

objects, and contract specifications as the axiomatization of a mathematical theory. Our aim was to

increase the expressiveness and rigor of ITP-based formal methods, enabling the expression and verification

of meta properties.

We illustrated with an example, formal specification of an AMM. Not only were we able to describe

high-level, cryptoeconomic properties that target market efficiency and arbitrage, but we showed that a

metaspecification can shed light on choices made in the formalization of the specification and justify their

correctness.

We hope that this work leads to a more rigorous and formal understanding of the cryptoeconomic

properties of smart contracts, which in turn can help us mitigate the near-ubiquitous cryptoeconomic

vulnerabilities in contract design.

60

Chapter 5

Contract Morphisms

In this chapter we address the second challenge to contract specification, detailed in Section 1.2.2.

5.1 Introduction

Faulty upgrades are a meaningful source of smart contract vulnerabilities. Costly attacks such as those on

Uranium Finance (2021) [80], NowSwap (2021) [36], and Nomad (2022) [73, 108], totaling 241 million USD

in lost assets, are a few of many examples of contracts attacked after an erroneous upgrade. Furthermore,

because verifying software is time, labor, and resource intensive, it can be difficult to justify formally

verifying software which may be upgraded quickly or frequently—a problem shared with other verified

software, e.g. [195, 233]. Both of these factors limit the effectiveness of formal methods to address security

issues in real-world software, inhibiting verification as business and security propositions [207].

What is needed is a practical and formal framework through which to specify and verify contract upgrades.

As it stands we have no such framework apart from repeating the formal specification and verification

process on a new contract version. Not only are upgrades costly from a verification perspective, as we

have no good way of reusing much of the verification work on previous contract versions, but incorrect

specifications are themselves a meaningful source of contract vulnerabilities (see Chapter 4). Thus each

time a specification is made from scratch we risk introducing errors of incorrect specification.

To mitigate these issues we introduce a formal framework for specifying and verifying contract upgrades,

through which we can reuse formal specification and proof on previous contract versions. This framework

relies on the notion of a contract morphism, a theoretical tool we introduce that formally encodes structural

relationships between smart contracts, and with which we can specify and reason about the structure

and behavior of an upgraded contract relative to its previous versions. We argue that this is a natural

framework for specifying and verifying contract upgrades, one which could decrease the cost of formally

61

verifying contract upgrades as well as the risk of introducing vulnerabilities due to incorrect specification.

We proceed as follows. In Section 5.2, we survey related work. In Section 5.3, we introduce contract

morphisms as a formal tool to specify and verify contract upgrades. In Section 5.4 we give two examples

of formally specifying a contract upgrade with contract morphisms. In Section 5.5 we discuss formal

verification with contract morphisms. We conclude in Section 5.6.

5.2 Related Work

In the realm of smart contracts there is limited formal work on formal reasoning about contract upgrades.

Previous work [22, 65] proposes paradigm-shifting methods to either attach formal proofs to smart

contracts and their upgrades, which are verified by the chain, or to trust a canonical third party to verify

all contract upgrades before deployment. Unfortunately this work is likely impractical, as both solutions

require substantial paradigm shifts or re-engineering of blockchain ecosystems. The latter also arguably

contradicts the permissionless ethos of blockchain ecosystems by mandating a trusted third party.

In the context of software more generally, much work has gone into ensuring that software upgrades

are carried out safely with formal methods [112, 132, 233]. Recent work has begun to address the

issue of adapting formal proofs in a proof assistant to changes in software in order to lower the cost of

formally verified software which may undergo regular upgrades [195]. This problem is complicated by

the computable nature of proofs in proof assistants like Coq; chosen data types strongly influence the

structure of proofs, making adaptation difficult [125]. A notable contribution to this work is Ringer et

al.’s work on proof repair [194, 196], which seeks to relate a new program version to the old—by type

equivalences or by comparing inductive structures—and thereby reuse previously-completed proofs on the

updated code.

Drawing on this previous work, particularly Ringer et al.’s idea of reusing formal proofs by way of

structural similarities between programs, our goal is to provide a framework for using formal methods

to formally specify and verify smart contract upgrades. Contract morphisms (Section 5.3) will be our

primary theoretical tool for specifying and verifying contract upgrades. Their purpose is to formally

encode a structural relationship between smart contracts which can be used for both formal specification

and proof reuse. With contract morphisms we address the problem of formal reasoning about contract

upgrades, but in contrast to previous work on the subject our proposed framework does not require the

paradigm-shifting reengineering of blockchain systems in order to be used.

Finally, we note that for smart contracts there is a distinction between contract upgrades and contract

upgradeability. Some contracts come with a predefined logic to handle upgrades and avoid hard forks, the

most popular of these on Ethereum being the Diamond framework [136]. However, they are complicated

contracts as their specifications include the upgradeability functionality and governance, as well as the

functionality of a given version of the contract. We will only consider upgrades via hard forks in this

62

paper, leaving the question of rigorous formal specification and verification of upgradeable contracts to

future work.

5.3 Contract Morphisms

In what follows we define contract morphisms, a theoretical tool which codifies formal relationships

between smart contracts. In later sections we use them to formally specify and verify contract upgrades.

We argue that this provides our desired formal framework.

5.3.1 Morphisms of Pure Functions

Before focusing on the specific case of smart contracts, we consider the more general case of programs

formalized as pure functions. Take types A,A′ and B,B′, and two functions p : A → B and q : A′ → B′.

A morphism from p to q is a or a pair of functions fi and fo which form a commutative square,

A A′

B B′

fi

p q

fo

i.e. for which

q ◦ fi = fo ◦ p.

Together, we call fi and fo the morphism

f : p → q.

Via fi and fo, the commutative square like the above maps inputs and outputs of p to inputs and outputs

of q. If p and q are programs (in particular, pure functions), we can also interpret this as execution traces

of p to execution traces of q, such that transforming the inputs of p into those of q with fi, and then

applying q is the same as applying p first and then transforming the outputs over fo.

We can define composition of morphisms easily as the composition of commutative squares. That is,

given functions p, q, and r, and morphisms

f ′ : p → q and f ′′ : q → r,

we can define a morphism f := f ′′ ◦ f ′ : p → r by the outer square of the following diagram,

63

A A′ A′′

B B′ B′′

f ′
i

p q

f ′′
i

r

f ′
o f ′′

o

which is commutative if each of the inner squares are commutative. Note that composition is associative,

assuming the underlying functions are associative, and that we have the obvious identity morphism

fid : p → p given by fi, fo := id,

A A

B B

id

p p

id

which commutes trivially. Thus given a well-defined class of functions, which in our case will be smart

contracts modeled in Coq by pure functions, we have a category on those functions with morphisms given

by commutative squares on those pure functions.

In the coming sections, given a morphism f : p → q, we might consider the case that q is an upgraded

version of p. Because f relates execution traces of q to those of p, we will see this can be used to reason

formally about q in terms of p, both in specification and verification.

5.3.2 Contract Morphisms in ConCert

Consider contracts C1 and C2 in ConCert,

C1 : Contract Setup1 Msg1 State1 Error1

C2 : Contract Setup2 Msg2 State2 Error2.

We define a data type of morphisms between contracts C1 and C2,

ContractMorphism C1 C2.

This data type consists firstly of four component functions between the contract types of C1 and C2—the

Setup, Msg, State, and Error types respectively.

• setup morph : Setup1 -> Setup2

• msg morph : Msg1 -> Msg2

• state morph : State1 -> State2

• error morph : Error1 -> Error2.

64

1 (* functions to form a commutative square on init *)
2 mA_init :=
3 fun (c : Chain) (ctx : ContractCallContext) (s : Setup) ⇒
4 (c, ctx, setup_morph s).
5 mB_init := fun (res : result State Error) ⇒
6 match res with
7 | Ok init_st ⇒ Ok (state_morph init_st)
8 | Err e ⇒ Err (error_morph e)
9 end.

10

11 (* functions to form a commutative square on receive *)
12 mA_recv := fun (c : Chain) (ctx : ContractCallContext)
13 (st : State) (op_msg : option Msg) ⇒
14 (c, ctx, state_morph st, option_map msg_morph op_msg).
15 mB_recv := fun (res : result (State ∗ list ActionBody) Error) ⇒
16 match res with
17 | Ok (init_st, nacts) ⇒ Ok (state_morph init_st, nacts)
18 | Err e ⇒ Err (error_morph e)
19 end.

Listing 5.1: We use f init : init C1 -> init C2 and f recv : receive C1 -> receive C2 for
the horizontal arrows of a pair of commutative squares, respectively, in the definition of a contract
morphism.

We can use these component functions to make commutative squares like those we saw in Section 5.3.1

for each of the init and receive functions. For init, the horizontal arrows of the squares are given

by the functions mA init and mB init. For receive, the horizontal arrows are given by the functions

mA recv and mB recv. See Listing 5.1 for the definition of these functions in terms of the four component

functions given above.

Ainit A′
init Arecv A′

recv

Binit B′
init Brecv B′

recv

mA init

init init′

mA recv

receive receive′

mB init mB recv

The functions defined above give us squares, but to finish the definition of contract morphisms we need

these squares to commute. Thus our definition includes two coherence conditions, one for the init square

and one for the receive square, which are given as follows.

1 (* The coherence condition that makes the init square commute *)

2 init_coherence: forall c ctx s,

3 (match (init C1 c ctx s) with

4 | Ok init_st ⇒ Ok (state_morph init_st)

5 | Err e ⇒ Err (error_morph e)

6 end) =

7 (init C2 c ctx (setup_morph s)).

8

9 (* The coherence condition that makes the receive square commute *)

10 recv_coherence : forall c ctx st op_msg,

65

1 Record ContractMorphism
2 (C1 : Contract Setup1 Msg1 State1 Error1)
3 (C2 : Contract Setup2 Msg2 State2 Error2) :=
4 build_contract_morphism {
5 (* the components of a morphism *)
6 setup_morph : Setup1 → Setup2 ;
7 msg_morph : Msg1 → Msg2 ;
8 state_morph : State1 → State2 ;
9 error_morph : Error1 → Error2 ;

10 (* coherence conditions *)
11 init_coherence : forall c ctx s,
12 result_functor state_morph error_morph (init C1 c ctx s) =
13 init C2 c ctx (setup_morph s) ;
14 recv_coherence : forall c ctx st op_msg,
15 result_functor (fun ’(st, l) ⇒ (state_morph st, l))
16 error_morph
17 (receive C1 c ctx st op_msg) =
18 receive C2 c ctx (state_morph st)
19 (option_map msg_morph op_msg) ;
20 }.

Listing 5.2: The formal definition of a contract morphism in ConCert, consisting of four component
functions and two coherence conditions, which together give a pair of commutative squares.

11 (match (receive C1 c ctx st op_msg) with

12 | Ok (new_st, new_acts) ⇒ Ok (state_morph new_st, new_acts)

13 | Err e ⇒ Err (error_morph e)

14 end) =

15 (receive C2 c ctx (state_morph st) (option_map msg_morph op_msg)).

Thus a contract morphism

m : ContractMorphism C1 C2

is defined as a pair of commutative squares, each of which are morphisms between the respective init

and receive functions of each contract. We give the formal definition of a contract morphism in Listing

5.2.

As the name morphism suggests, we should expect contract morphisms to behave like morphisms in a

well-defined category. That is, we should have an associative composition operation on morphisms, and

for every contract C should have an identity morphism

id C : ContractMorphism C C

with which composition is trivial.

Indeed, this is the case. We can compose morphisms by composing the morphism component functions.

We have two results,

compose init coh and compose recv coh,

66

which show that coherence of the composed morphism follows from the coherence conditions of each

individual morphism. These results simply show that commutative squares compose, as we saw in Section

5.3.1, giving us a well-defined composition function compose cm.

1 compose_cm : forall C1 C2 C3

2 (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) : ContractMorphism C1 C3.

We also have a proof that composition is associative, drawing on the associativity of component functions,

and we have the obvious identity morphism, given by four identity component functions, such that

composition with the identity is trivial.

1 Definition id_cm (C : Contract Setup Msg State Error) :

2 ContractMorphism C C := {|

3 (* components *)

4 setup_morph := id ;

5 msg_morph := id ;

6 state_morph := id ;

7 error_morph := id ;

8 (* coherence conditions *)

9 init_coherence := init_coherence_id C ;

10 recv_coherence := recv_coherence_id C ;

11 |}.

This gives us a well-defined category Contracts of smart contracts, with objects given by the Contract

type and morphisms given by the ContractMorphism type.

Note that in many categories, e.g. the categories of sets, topological spaces, or groups, morphisms are

structure-preserving functions. So too for us. The existence of a morphism

f : ContractMorphism C1 C2

indicates a structural and mathematical relationship between contracts C1 and C2, in particular relating

their execution traces via the four component morphisms. As we will see, this relationship can be exploited

to prove theorems about one contract in terms of another contract, something which we will do here in

the case of contract upgrades and upgradeability.

In many categories there are also different classes of morphisms, including injections (embeddings,

monomorphisms), surjections (quotients, epimorphisms), and isomorphisms. Injections, or embeddings,

typically preserve the structure of the domain faithfully within the codomain, essentially identifying a

copy of the domain within the codomain. Surjections typically represent a compression of some kind,

and the information lost in the compression can frequently be described by a kernel object. As we will

see, we also have injective and surjective contract morphisms, which are given when the four component

functions are, respectively, injective or surjective, and which follow analogous intuitions.

67

5.4 Morphisms to Specify and Verify Contract Upgrades

Our goal now is to use contract morphisms as a tool to formally specify and verify contract upgrades

in ConCert. Consider a contract upgrade from the perspective of a formal specification. Contracts are

usually upgraded with a goal that relates the new to the previous contract version, whether it be to

patch a bug, add functionality, or improve contract features. Thus the new specification relates to the

old—it should eliminate a vulnerability but preserve all other functionality, be backwards compatible

while adding functionality, or make improvements such as greater gas-efficiency without deviating from

the behavior of the previous contract version. Of course, in practice an upgraded contract is not formally

specified in relation to an older version, but rather by altering the old specification into the new, or

simply starting from scratch and writing a new specification by hand. As discussed in Section 5.1, this

can be a source of vulnerabilities.

In this section, we will formally specify contract upgrades in two examples using contract morphisms.

The advantage of using morphisms is that we are able to clearly articulate the intent of an upgrade in the

formal specification by way of a morphism in such a way that formal verification consists of producing a

morphism between the updated contract implementation and a previous version which meets the required

specification.

Example 5.4.1 (Swap Contract Upgrade). Consider a smart contract C1 that prices and executes trades,

e.g. a decentralized exchange (DEX) or an automated market maker (AMM) [234]. Suppose that we wish

to upgrade C1 to a contract C2 so that it calculates trades at higher precision by a factor of ten, meaning

that the internal token balances in storage have one more decimal place, and the trade calculation is

able to calculate at one decimal place greater in precision. Then in ConCert our contract C1 will have a

storage type which keeps track of internal token balances, exposed by a function get bal.

1 Context { storage : Type } { get_bal : storage → N }.

It will also have a TRADE entrypoint which accepts a payload of some type, trade data, characterized by

an entrypoint type, entrypoint, and an associated typeclass, Msg Spec.

1 Class Msg_Spec (T : Type) := {

2 (* the trade entrypoint *)

3 trade : trade_data → T ;

4 (* for any other entrypoint types *)

5 other : other_entrypoint → option T ;

6 }.

7

8 (* We assume an entrypoint conforming to Msg_Spec *)

9 Context { entrypoint : Type } ‘{ e_msg : Msg_Spec entrypoint }.

Listing 5.3: We assume an entrypoit type entrypoint, characterized by a typeclass Msg Spec, which

68

includes a trade function trade.

Now assume that C1 has some internal function calculate trade that it uses to calculate how many

tokens will be traded out for a given contract call to the TRADE entrypoint. The trade quantity, internal

token balances, and the calculate trade function will all be accurate up to some decimal place,

commonly 9 in the wild, formalized in the following specification, spec trade, of C1.

1 (* the specification of C1’s trading functionality with regards to the

2 calculate_trade function *)

3 Definition spec_trade : Prop :=

4 forall cstate chain ctx trade_data cstate’ acts,

5 (* for any successful call to C1’s trade entrypoint, *)

6 receive C1 chain ctx cstate (Some (trade trade_data)) =

7 Ok(cstate’, acts) →

8 (* the balance in storage updates according to the

9 calculate_trade function *)

10 get_bal cstate’ =

11 get_bal cstate + calculate_trade (trade_qty trade_data).

Listing 5.4: The formalized proposition that C1 uses calculate trade to price trades.

The property of Listing 5.4, spec trade, is a specification with regards to which C1 is assumed to be

correct.

Now we wish to upgrade C1 to a new contract C2 such that C2 calculates trades and keeps balances at

one decimal place higher of accuracy. We will first have a specification for C2 which is analogous to

spec trade in Listing 5.4, which says that C2 uses some new function, calc trade precise, to calculate

its trades.

1 (* The specification of C2’s trading functionality with regards to the

2 calculate_trade_precise function. This is analogous to spec_trade *)

3 Definition spec_trade_precise : Prop :=

4 forall cstate chain ctx trade_data cstate’ acts,

5 (* for a successful call to C2’s trade entrypoint, *)

6 receive C2 chain ctx cstate (Some (trade trade_data)) = Ok (cstate’, acts) →

7 (* the balance in storage updates according to the

8 calculate_trade_precise function *)

9 get_bal cstate’ =

10 get_bal cstate +

11 calculate_trade_precise (trade_qty trade_data).

Listing 5.5: The formalized proposition that C2 uses calculate trade precise to price trades.

69

Our goal now is to use a contract morphism to complete the formal specification of C2 in terms of

C1. Our specification is this: A correct implementation of the upgraded contract C2 must satisfy

spec trade precise and be accompanied by a contract morphism

f : ContractMorphism C2 C1

with the following five properties, stated formally in Listing 5.6:

1. msg morph f rounds down the precision of messages to trade by a factor of 10

2. msg morph f is the identity morphism on all messages aside from messages to trade

3. state morph f rounds down on the balances kept in storage exposed by get bal

4. error morph f and setup morph f are the respective identity functions

1 (* FORMAL SPECIFICATION:

2 An upgrade C2 must admit a morphism

3 f : ContractMorphism C2 C1

4 with the following properties: *)

5

6 (*1. msg_morph f rounds trades down when it maps inputs of the receive function*)

7 Definition f_recv_input_rounds_down

8 (f : ContractMorphism C2 C1) : Prop :=

9 forall t’, exists t,

10 (msg_morph C2 C1 f) (trade t’) = trade t ∧

11 trade_qty t = (trade_qty t’) / 10.

12

13 (* 2. msg_morph f only affects the trade entrypoint *)

14 Definition f_recv_input_other_equal

15 (f : ContractMorphism C2 C1) : Prop :=

16 forall msg o,

17 (* for calls to all other entrypoints, *)

18 msg = other o →

19 (* f is the identity *)

20 option_map (msg_morph C2 C1 f) (other o) = other o.

21

22 (* 3. state_morph f rounds down on the storage *)

23 Definition f_state_morph (f : ContractMorphism C2 C1) : Prop :=

24 forall st, get_bal (state_morph C2 C1 f st) = (get_bal st) / 10.

25

26 (* 4. error_morph f and setup_morph f are the identity functions *)

27 Definition f_recv_output_err (f : ContractMorphism C2 C1) : Prop :=

28 (error_morph C2 C1 f) = id.

29

70

30 Definition f_init_id (f : ContractMorphism C2 C1) : Prop :=

31 (setup_morph C2 C1 f) = id.

Listing 5.6: The formal specification of the upgrade from C1 to C2.

The meaning of a morphism f satisfying the above conditions, as a specification, is in the coherence

conditions of f. We know that every possible execution trace of C2 has a corresponding execution trace

in C1, and we know that the input messages are identical except that C2 accepts trades at a higher level

of precision. The coherence conditions also tell us that the state of C2 is always related to the analogous

state of C1, expressed in the function state morph. With regards to the trading functionality of our new

contract C2, we know that the balance kept in the storage of C2, which is affected by trades, will always

be identical to the analogous balance of C1 after rounding down, which we can formally prove.

1 Theorem rounding_down_invariant bstate caddr

2 (trace : ChainTrace empty_state bstate):

3 (* Forall reachable states with contract at caddr, *)

4 env_contracts bstate caddr = Some (C2 : WeakContract) →

5 (* cstate is the state of the contract AND *)

6 exists (cstate’ cstate : storage),

7 contract_state bstate caddr = Some cstate’ ∧

8 (* cstate is contract-reachable for C1 AND *)

9 cstate_reachable C1 cstate ∧

10 (* such that for cstate, the state of C1 in bstate,

11 the balance in cstate is rounded-down from the

12 balance of cstate’ *)

13 get_bal cstate = (get_bal cstate’) / 10.

Listing 5.7: All reachable states of C2 round down to their corresponding states in C1.

Most importantly, f guarantees a relationship between the trading functionality of C2 and that of C1: C2

emulates the exact same trading behavior as C1 after rounding down one decimal place in precision. This

means that C2 does not introduce any novel vulnerabilities relating to trades and balances not extant

to C1. In particular, a proof of this fact would have prevented the attacks on Uranium Finance [80],

NowSwap [36], and Nomad [73].

Moving on, note that f of Example 5.4.1 was directed from C2 to C1. The coherence conditions of f

forced all execution traces of C2 to conform to a pattern set by C1, which is precisely what lets us make

the claim that we haven’t introduced any new behaviors regarding trading functionality to C2 aside from

the increase in precision. Morphisms directed in the opposite direction can also be used in specification.

Rather than classifying all possible execution traces of the upgrade, in this case a morphism proves that

certain desired behavior exists within the contract. We illustrate with an example of specifying backwards

compatibility.

71

Example 5.4.2 (Backwards Compatibility). Consider contracts C1 and C2, where C2 is again an upgrade

of C1, and suppose that we wish to show that C2 is backwards compatible with C1. The intent of this

upgrade is that the full functionality of C1 be present within C2. We show this by embedding C1 into C2

via an injective contract morphism.

We illustate with a simple example of a counter contract C1 which keeps some n : N in storage and has

one entrypoint incr that increments the natural number in storage by 1. C1 is upgraded to C2, which in

addition to an entrypoint to increment the natural number in storage also includes a decr entrypoint to

decrement the natural number in storage by 1.

1 Inductive entrypoint1 := | incr (u : unit).

2 Inductive entrypoint2 := | incr’ (u : unit) | decr (u : unit).

Listing 5.8: The entrypoint types of C1 and C2, respectively.

We prove that C2 is backwards compatible with C1 by defining a contract morphism

f : ContractMorphism C1 C2

with the following component functions.

1 Definition msg_morph (e : entrypoint1) : entrypoint2 :=

2 match e with | incr _ ⇒ incr’ tt end.

3 Definition setup_morph : setup → setup := id.

4 Definition state_morph : storage → storage := id.

5 Definition error_morph : error → error := id.

These component functions do the obvious thing—send calls to the increment entrypoint of C1 to the

increment entrypoint of C2 with the same payload, and do nothing otherwise. And f is an embedding

since each of its component functions are manifestly injective, which we can formally prove.

1 Lemma f_is_embedding : is_inj_cm f.

Again, the meaning of f as a specification is in its coherence conditions. Any reachable state of C1

necessarily has an analagous reachable state of C2 which is fully structure preserving: if we were to only

use the functionality of C2 which it inherits from C1, we would get identical contract behavior to C1. We

have a formal proof of this result.

1 Theorem injection_invariant bstate caddr

2 (trace : ChainTrace empty_state bstate):

3 env_contracts bstate caddr = Some (C1 : WeakContract) →

4 (* Forall reachable states cstate of C1,

5 there’s a corresponding reachable state

6 cstate’ of C2, related by the injection *)

72

7 exists (cstate’ cstate : storage),

8 contract_state bstate caddr = Some cstate ∧

9 (* cstate’ is a contract-reachable state of C2 *)

10 cstate_reachable C2 cstate’ ∧

11 (* .. equal to cstate *)

12 cstate’ = cstate.

Listing 5.9: C2 is backwards compatible with C1 via the embedding f.

This is a toy example, but in practice specifying a new contract which is backwards compatible to the old

in this strong sense may not be straightforward. Via contract embeddings, contract morphisms give us a

way of formally specifying and verifying backwards compatibility.

5.5 Further Applications of Morphisms in Formal Verification

Contract morphisms establish a relationship between contracts which makes them suitable for specifying

and verifying upgrades. For that same reason, contract morphisms may also have applications in proof

reuse, or proof transport, more generally. The special case of contract isomorphism may also provide a

stronger relationship between formal specification and proof on the associated contracts.

5.5.1 Hoare Properties and Contract Morphisms

First we consider properties that transport over a morphism, in particular those that we can pull back

over a morphism. Hoare properties are a particularly strong example: they relate pre-conditions to

post-conditions, which is relevant to morphisms because morphisms relate inputs and outputs of contract

executions. As contracts are formalized in ConCert, constraints on on inputs amount to pre-conditions,

and constraints on outputs amount to post-conditions. Thus for contracts C1 and C2 and a morphism f :

ContractMorphism C1 C2, we might expect to be able to transport Hoare properties of one contract

over f to the other.

Indeed, any Hoare property proved for C2 will always have an analogous result on C1, mediated by f. We

proved this in two results which relate all reachable states of C1 to those of C2, and those of C2 to those of

C1, via the state morph component of f. These results, left cm induction and right cm induction,

are collectively called morphism induction, as they allow us to induct along the execution trace of one

contract in relation to that of another. In particular, morphism induction says that properties of the

state of C2 which are invariant over state morph must hold for all states of C1.

As a toy example of this relationship, suppose that we can prove that if a certain boolean in the storage

of C2 is set at true, a given entrypoint e2 of C2 can be successfully called, and that it fails otherwise.

73

Suppose further that the msg morph component of f sends all calls to an entrypoint e1 of C1 to calls to

e2, and that the state morph component of f sends a state of C1 with an analogous boolean set at true

to one of C2 with the boolean set at false, and visa versa. Then by morphism induction on the trace of

C1, we get for free that calls to e1 succeed only when the analogous boolean in the state of C1 is set at

false, rather than true. The relationship encoded by f between contracts C1 and C2 shows that C1 and

C2 use opposing, but predictably related, logic for execution, which allows us to reuse proofs on C2 to

prove analogous results on C1.

5.5.2 Isomorphisms and Propositional Indistinguishability

This relationship between contracts strengthens when we have a pair of morphisms

f : ContractMorphism C1 C2 and g : ContractMorphism C2 C1

such that compose cm g f = id cm C1 and compose cm f g = id cm C2. This is an isomorphism

of contracts. Isomorphisms of contracts are particularly strong; the component functions are equivalences

of types and they induce a bisimulation of contracts in ConCert.

Since bisimulation is a strong and mathematically stable notion of equivalence [202], future work could

investigate proof transport over contract isomorphisms, building on recent work in Coq-based formal

methods. For example, we may wish to prove results on a contract optimized for formal reasoning, and

transport those onto a bisimlar, performant contract, similar to the work of Cohen et al. [56]. This might

include altering certain data types while maintaining an equivalence; chosen data types have a strong

influence on the structure of proofs and can be nontrivial to transport [125, 196, 216]. We will explore

this in greater depth in Chapter 6.

5.6 Conclusion

Our goal in this paper was to provide a formal framework for formally specifying and verifying smart

contract upgrades in Coq. To do so we introduced the notion of a contract morphism, which encodes a

formal relationship between execution traces of two contracts. We argued that this was a suitable, formal

notion with which to reason about contract upgrades and provided examples of contract upgrades which

can be specified and verified with contract morphisms. To our knowledge, this is the first time that the

intent of an upgrade has been articulated explicitly in formal specification, and is the first formal attempt

at reasoning explicitly about contract upgrades in a formal setting.

This work is intended to be a preliminary framework for reasoning about contract upgrades in Coq.

As such, there are practical questions to be asked, such as whether these tools are even feasible on

gas-optimized code, which can be difficult to formally reason about. Even so we are optimistic, as

the previously-mentioned work by Ringer et al. in proof repair is practically useful and resembles our

74

framework from a theoretical standpoint. Since the status quo is to simply update the formal specification

of a previous version into the specification of the new, we hope that contract morphisms will be a strong

start to efficient and rigorous verification of contract upgrades.

75

76

Chapter 6

Contract Bisimulations

In this chapter we address the third challenge to contract specification which we detailed in 1.2.3.

6.1 Introduction

The efficacy of formal verification to prevent actual, critical contract vulnerabilities depends on the

feasibility of applying formal verification to deployable contract code. However, deployable code is typically

optimized for performance, which typically makes it more difficult to reason about formally. Code highly

optimized for performance thus risks vulnerability due to the difficulty of formal reasoning, while code

written for ease of formal reasoning may not be efficient enough for the resource-scarce environment of

smart contracts. Ideally, we would reason about contracts in a state optimized for formal reasoning while

still deploying them in a state optimized for efficiency and gas consumption.

To do so, what is needed is a formal tool that enables us to reason about code in a format optimized

for intelligibility, design and formal reasoning, whose results can be applied to a highly optimized and

equivalent version of that code. As it stands no such framework exists for smart contracts. To mitigate

this we introduce a formal framework of extensional equivalence between smart contracts in Coq, called

contract isomorphisms. These equivalences will allow us to use a reference implementation as a specification

of an optimized contract, as well as to port proofs between contracts that can be proved to be bisimilar.

We proceed as follows. In Section 6.2 we discuss related work. In Section 6.3 we define contract

isomorphisms, our notion of formal, extensional equivalence which implements a bisimulation of contracts.

In Section 6.4 we show that our definition of contract isomorphisms induces a strong form of equivalence

between contracts, a trace equivalence. In Section 6.5, we give an example of a contract formally specified

by equivalence to an extant contract and port proofs over a bisimulation. In Section 6.6 we conclude.

77

6.2 Related Work

Bisimulations are a strong and mathematically stable notion of equivalence in theoretical computer science

[202]. They primarily denote an equivalance of state transition systems [135, 203]. They are, for example,

central in the study of process algebras, which rely on a notion of equivalence between processes in order

to reason algebraically about the behavior of concurrent systems.

One critical role that bisimulations play is in equivalence checking [88, 98]. Equivalence checking is an

approach to formal verification that consists in proving that two programs or models are related modulo

some equivalence relation, or that one is included in the other modulo some preorder relation [88]. In

this case, one uses a bisimulation to prove that a particular program meets its specification, where the

specification is defined not in prose but as a program. Areas of formal reasoning and logic, including

Hennessy-Milner logic, treat bisimulations as full equality and cannot distinguish between bisimilar

processes [120, 135].

To our knowledge none of these techniques have been applied to smart contracts, but one can imagine that

with a sufficient notion of contract bisimulation, we can mimic this process and use a contract formally

verified and optimized for formal reasoning as a specification for a contract optimized for deployment.

Proving the optimized contract correct then consists of producing a contract bisimulation.

One could also conceive of porting proofs over such an equivalence of contracts, e.g. in [56, 216]. The

strategy of porting proofs over equivalences is used in formal verification elsewhere. For example, work by

Ringer et al. uses type equivalences to efficiently reuse proofs when updating a formally verified program

[196]; work by Cohen et al. [56] uses refinement types to optimize code in a proof-invariant way. Our

work here is in a similar spirit, but our equivalance in question is a contract bisimulation instead of a

type equivalence.

To our knowledge, the work here is the first of its kind for smart contract verification. We build off of

contract morphisms, introduced in Chapter 5. Our work here is a special use case of that theoretical tool.

6.3 Contract Isomorphisms

The fundamental contribution of this paper is a formal mechanism for proving equivalence (bisimilarity)

between smart contracts in Coq, to be used in formal specification and verification. To present this

mechanism, we first give a theoretical definition of contract isomorphisms as bisimulations between

contracts (Section 6.3.1), moving onto the details of an implementation in Coq (Section 6.3.2).

78

6.3.1 Bisimilarity

Bisimilarity is a stable and natural concept that describes equivalence between processes [100, 202, 221].

A standard definition of bisimulation for labelled transition systems is as follows.

Definition 6.3.1 (Bisimulation). Consider a labelled transition system (S,Λ,→), where S is a set

of states, Λ is a set of labels, and → is a set of labelled transitions (a subset of S × Λ × S). A

bisimulation is a binary relation R ⊆ S × S such that for every pair of states (p, q) ∈ R and labels

α, β ∈ Λ,

• if p
α−→ p′, then there is q

β−→ q′ such that (p′, q′) ∈ R

• if q
β−→ q′, then there is p

α−→ p′ such that (p′, q′) ∈ R.

A bisimulation defines equivalence between transition systems by defining a correspondence between

states that is stable under transition: given two equivalent states and a transition on the first, there is a

corresponding transition such that the output states are also equivalent.

As we will see in the following section, ConCert models smart contracts as pure functions. Since we

wish to capture the notion of bisimulations of contracts by defining equivalences of states that are stable

under transitions, our specialized definition of bisimulation is a natural isomorphism of pure functions. A

natural isomorphism of two pure functions defines a correspondence of function inputs and outputs that

is stable under application of the function.

Definition 6.3.2 (Natural Isomorphism of Pure Functions). Consider pure functions F : A → B

and G : A′ → B′. A natural isomorphism between F and G is a pair of isomorphisms, ιA : A ∼= A′

and ιB : B ∼= B′ such that the following square commutes:

A A′

B B′

ιA
∼

F G

ιB
∼

Smart contracts modeled as pure functions get their state and entrypoint calls as inputs and as output

an updated state with the resulting transactions. Because contract calls result in transitions between

contract states, we can consider contracts as state transition systems. The fact that the square commutes

is precisely what makes it a bisimulation in this particular interpretation of a state transition system.

6.3.2 Bisimulations in ConCert

We now move on to give details of a specific implementation of contract bisimulations in ConCert.1

Following the theory in Section 6.3.1, we now formalize bisimulations in ConCert between a pair of

1The definitions and results of this section are available at https://github.com/dhsorens/FinCert/blob/main/
theories/ContractMorphisms.v

79

https://github.com/dhsorens/FinCert/blob/main/theories/ContractMorphisms.v
https://github.com/dhsorens/FinCert/blob/main/theories/ContractMorphisms.v

AC1 A′
C2 AC1 A′

C2

BC1 B′
C2 BC1 B′

C2

fi

init init

fi

receive receive

fo fo

Figure 6.1: A bisimulation of contracts in ConCert is a natural isomorphism of each of the component
functions init and receive, which inductively constructs a contract bisimulation.

contracts C1 and C2,

C1 : Contract Setup1 Msg1 State1 Error1

C2 : Contract Setup2 Msg2 State2 Error2,

by constructing natural isomorphisms between the init and receive functions, respectively, of C1 and

C2. This is made by defining a correspondence of inputs and outputs to each of init and receive which

is stable under contract initialization and contract calls. Constructing this equivalence consists of proving

that the respective init functions are equivalent (the base case) and then show that each of the steps

are also equivalent (the inductive step).

As we will see in Section 6.4, these natural isomorphisms induce a trace equivalence of contracts, or

a bisimulation of contracts when considering them as state transition systems. This is an extensional

equivalence of contracts.

6.3.2.1 Constructing Bisimulations via Contract Isomorphisms

We can encode these extensional equivalences in ConCert using contract morphisms from Chapter 5.

Recall that morphisms compose, and there is a canonical identity morphism. These two facts give us

everything we need to define an invertible pair of contract morphisms, or a contract isomorphism, which

will take as our notion of contract bisimulation.

Definition 6.3.3 (Contract Isomorphism). A contract isomorphism between contracts C1 and C2 is

a pair of morphisms,

f : ContractMorphism C1 C2

g : ContractMorphism C2 C1,

such that f and g compose each way to the identity morphism.

To state this as a formal proposition, we summarize this definition as a proposition in Coq in Listing 6.1.

80

1 Definition is_iso_cm
2 (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1) : Prop :=
3 compose_cm g f = id_cm C1 ∧
4 compose_cm f g = id_cm C2.

Listing 6.1: Contract isomorphisms are defined as a pair of morphisms that compose each way to the
identity morphism under the morphism composition function compose cm.

6.4 Contract Bisimulations Induce Generated Graph Isomor-

phisms

Our task now is to prove that contract isomorphisms actually induce the desired, strong notion of

equivalence between state transition systems. In fact, they induce an isomorphism of the generated

trace graphs of the contracts in question [221]. In this section we give a formal proof in Coq that a

contract isomorphism produces a trace equivalence of contracts. We will first formalize a trace equivalence

between contracts in ConCert in Section 6.4.1, and then show that contract isomorphisms imply trace

equivalence in Section 6.4.2, showing that our definition of contract isomorphisms induces the desired

strong equivalence of bisimulation.

6.4.1 Trace Equivalences in ConCert

To codify trace equivalances in ConCert, we formally define contract traces and morphisms betwen

contract traces.2 With morphisms we can formalize equivalence via trace isomoprhisms. Similar to

contract morhpisms, contract trace morphisms are a formal, structural relationship between the traces

of two contracts. As we will see, an equivalence of contract traces is the strong form of extensional

equivalence that we are looking for.

6.4.1.1 Contract Traces

We begin by defining some key data types. First, a contract’s trace is a chained list of contract states,

connected by contract steps.

1 Definition ContractTrace (C : Contract Setup Msg State Error) :=

2 ChainedList State (ContractStep C).

Listing 6.2: A contract’s trace is a chained list of contract states, linked together by contract steps.

Contract steps are a record type of the data for a successful contract call, or a call to the receive

function, which links two contract states. The record contains data for a successful contract call such as

2The definitions and results of this section are available at https://github.com/dhsorens/FinCert/blob/main/
theories/Bisimulation.v

81

https://github.com/dhsorens/FinCert/blob/main/theories/Bisimulation.v
https://github.com/dhsorens/FinCert/blob/main/theories/Bisimulation.v

the contract call context, the incoming message, the resulting actions, as well as a proof that the call to

receive succeeds.

1 Record ContractStep (C : Contract Setup Msg State Error)

2 (prev_cstate : State) (next_cstate : State) := {

3 (* data for a successful contract call *)

4 seq_chain : Chain ;

5 seq_ctx : ContractCallContext ;

6 seq_msg : option Msg ;

7 seq_new_acts : list ActionBody ;

8 (* we can call receive successfully *)

9 recv_some_step :

10 receive C seq_chain seq_ctx prev_cstate seq_msg =

11 Ok (next_cstate, seq_new_acts) ;

12 }.

Listing 6.3: Contract steps are successful calls to the receive function.

Contract traces codify the trace of contracts as state transition systems.

6.4.1.2 Contract Trace Morphism

A contract trace morphism, analogous to a contract morphism, encodes a formal, structural relationship

between the traces of two contracts. For contracts

C1:Contract Setup1 Msg1 State1 Error1

C2:Contract Setup2 Msg2 State2 Error2,

a morphism of contract traces includes the following data:

• A function between contract state types, ct state morph : State1 -> State2.

• A proof that ct state morph sends valid initial states of C1 to valid initial states of C2.

• A function cstep morph that, for states state1 and state2 of C1, sends a contract step

step1 : ContractStep C1 state1 state2,

to a corresponding contract step of C2 between the corresponding states

step2 : ContractStep C2 (ct state morph state1) (ct state morph state2).

Inductively, this data gives us a relationship between all reachable states: initial states of each contract are

related via the function between state types, and from there, any contract step of C1 is related to a contract

step of C2 that respects the function on states. We codify this with a type f : ContractTraceMorphism

C1 C2.

82

Example 6.4.1 (The Identity Contract Trace Morphism). For any contract C we can define the identity

morphism id ctm, whose component functions are the identity and respective proofs are trivial, and

which inhabits the type ContractTraceMorphism C C.

Example 6.4.2 (Contract Trace Morphism Composition). We can define composition of contract

trace morphisms similar to compision of contract morphisms, via a function compose ctm, which takes

morphisms

f : ContractTraceMorphism C1 C2 and g : ContractTraceMorphism C2 C3

and returns a morphism

compose ctm g f : ContractTraceMorphism C1 C3.

To compose contract morphisms, we simply compose their component functions. That composition is

associative comes trivially. Similarly, it comes immediately that composition on either side with the

identity is a trivial operation, and so composition and identity behave as we might expect in a well-defined

category.

6.4.1.3 Contract Trace Isomorphisms

Contract trace isomorphisms are then defined analogously to contract isomorphisms (6.3.2.1).

Definition 6.4.1 (Contract Trace Isomorphism). A contract trace isomorphism between contracts

C1 and C2 is a pair of trace morphisms,

f : ContractTraceMorphism C1 C2

g : ContractTraceMorphism C2 C1,

such that f and g compose each way to the identity morphism id ctm.

To state this as a formal proposition, we summarize this definition in a type in Coq.

1 Definition is_iso_ctm

2 (m1 : ContractTraceMorphism C1 C2) (m2 : ContractTraceMorphism C2 C1) :=

3 compose_ctm m2 m1 = id_ctm C1 ∧

4 compose_ctm m1 m2 = id_ctm C2.

Listing 6.4: Contract trace isomorphisms are defined as a pair of morphisms that compose each way to

the identity morphism.

By definition, if two contracts are related by a contract trace isomorphism, then there is a one-to-one

correspondence between all possible contract states; furthermore, this correspondence respects initial

states. Thus extensionally, contracts which are trace isomorphic have identical behavior up to their state

83

isomoprhisms. When considered as a labelled transition system, their execution graphs are necessarily

isomorphic. The behavior of a contract is fully defined by its initial state and the steps it can take from

there, and so contract trace isomorphisms give us the strong form of extensional equivalence we are

looking for.

6.4.2 Contract Morphisms to Contract Trace Morphisms

The final result of this section is that contract bisimulations induce contract trace isomorphisms. We

prove this result by defining a function cm to ctm, which takes a contract morphism

f : ContractMorphism C1 C2

and returns a contract trace morphism

cm to ctm f : ContractTraceMorphism C1 C2,

which respects identity and compositions. Contract morphisms and contract trace morphisms define a

category whose objects are contracts in ConCert, so cm to ctm is a functor.

To define cm to ctm for a contract morphism f : C1 -> C2, we need a function between the state

types of C1 and C2 which respects initial states and state transitions. The obvious candidate is, of course,

the component function of f of contract states, f.(state morph), which respects initial states state

transitions by the coherence conditions of its definition.

Furthermore, the identity contract morphism induces the identity contract trace morphism, and composi-

tions of contract morphisms induce compositions of contract trace morphisms.

1 Theorem cm_to_ctm_id : cm_to_ctm (id_cm C1) = id_ctm C1.

Listing 6.5: Identity induces the identity.

1 Theorem cm_to_ctm_compose (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

2 (* the image of the composition = ... *)

3 cm_to_ctm (compose_cm g f) =

4 (* composing the image morphisms *)

5 compose_ctm (cm_to_ctm g) (cm_to_ctm f).

Listing 6.6: Compositions induce compositions.

Since contract isomorphisms and contract trace isomorphisms are both defined as respective morphism

pairs which compose each way to the identity, a bisimulation of contracts induces a trace equivalence. We

have our desired result.

84

6.5 Using Bisimulation as a Tool for Formal Specification

Contract isomorphisms (bisimulations) could be considered as a tool in at least two ways: first, to reuse

proofs on a different contract version by porting them over the isomorphism and achieve those results on

the target contract, e.g. as in Chapter 5; and second, to use a contract as a specification. To show this,

in this section we give an example of a contract whose specification is another contract, e.g. a reference

implementation, and explore the ways in which proofs transport over a contract bisimulation. This is an

example where a common optimization makes a contract more difficult to reason about, and we use a

contract bisimulation to formally specify the optimized contract with the intelligible contract.3

6.5.1 Linked Lists and Dynamic Arrays

Consider a simple contract C arr that manages an array of owners, e.g. for access control, each identified

by a natural number. It has functionality to add owners, remove owners, and swap owners. Consider also

a second implementation C ll that does the same, except that it stores owner IDs as a linked list instead

of a dynamic array, a common contract optimization strategy over arrays in Solidity which introduces

nontrivial challenges to verification [111]. The criteria that the second, optimized implementation must

satisfy in order to be correct is that it behave identically to the reference implementation from an

extensional standpoint precisely because the linked list is supposed to emulate a dynamic array (though

more efficiently at the bytecode level).

The two contracts C arr and C ll share setup and entrypoint types, but differ in their storage types and

the implementation of their entrypoint functions. Both contracts must maintain a set of owners with no

duplicates.

1 Inductive entrypoint :=

2 | addOwner (a : N) (* to add a as an owner ID *)

3 | removeOwner (a : N) (* to remove a as an owner ID *)

4 | swapOwners (a_fst a_snd : N). (* to swap a_fst for a_snd as owners *)

Listing 6.7: The entrypoint type shared by both C arr and C ll.

The first contract, C arr, keeps track of owners in an array in its storage type storage arr.

1 Record storage_arr := { owners_arr : list N }.

The optimized contract C ll keeps track of owners in a linked list implemented (somewhat unconventionally

in Coq) via a finite mapping.

1 Record storage_ll := { owners_ll : FMap N N }.

3The contracts and bisimulations of this section are available at https://github.com/dhsorens/FinCert/blob/
main/examples/Bisimulations/optimization/optimization2.v

85

https://github.com/dhsorens/FinCert/blob/main/examples/Bisimulations/optimization/optimization2.v
https://github.com/dhsorens/FinCert/blob/main/examples/Bisimulations/optimization/optimization2.v

The mapping emulates an array as follows: Using a global constant ROOT : N, the empty list is emulated

as the mapping which points ROOT to ROOT.

1 arr_to_ll := [] ⇒ { ROOT : ROOT }.

From here, to insert an element a into the mapping, we point ROOT to a, and a to whatever ROOT used to

point to (ROOT if a is the first element of the list).

1 arr_to_ll := [a] ⇒ { ROOT : a ; a : ROOT }.

This pattern continues such that in the mapping ROOT always points to the most recently-added element,

and elements form a chain until the last points back to ROOT. So for list of the form [a, b, c], the

corresponding mapping points ROOT to a, and a to b, b to c, and c back to ROOT.

1 arr_to_ll := [a, b, c] ⇒ { ROOT : a ; a : b ; b : c ; c : ROOT}

The three entrypoints behave analogously for their respective data structures. For our array contract,

C arr, calling (addOwner a) simply appends a to the list of owners (provided a is not already an owner).

1 addOwner a := {| owners_arr := l |} ⇒ {| owners_arr := a :: l |}.

For our linked list contract, C ll, calling (addOwner a) inserts the owner into the linked list.

1 addOwner a := {| owners_ll := { ROOT : a’ ; ... } |} ⇒

2 {| owners_ll := ROOT : a ; a : a’ ; ... |}.

Removing an owner behaves similarly: for C arr, (removeOwner a) removes a from the array,

1 removeOwner a := {| owners_arr := [..., b, a, b’, ...] |} ⇒

2 {| owners_arr := [..., b, b’, ...] |}.

while for C ll, (removeOwner a) updates the pointers in the mapping to excise a.

1 removeOwner a := {| owners_ll := { ... ; b : a ; a : b’ ; ... } |} ⇒

2 {| owners_ll := ... ; b : b’ ; ... |}.

Finally, to swap owners in C arr, (swapOwners a a’) replaces a with a’,

1 swapOwners a a’ := {| owners_arr := [..., b, a, b’, ...] |} ⇒

2 {| owners_arr := [..., b, a’, b’, ...] |}.

and C ll, does the analogous operation by updating its pointers.

86

1 swapOwners a a’ := {| owners_ll := { ... ; b : a ; a : b’ ; ... } |} ⇒

2 {| owners_ll := ... ; b : a’ ; a’ : b’ ; ... |}.

6.5.2 The Bisimulation

We now explore the consequences of a bisimulation, or a contract isomoprhism, between our reference

implementation C arr and its counterpart C ll.

1 Theorem bisim_arr_ll : contracts_isomorphic C_arr C_ll.

We first explore how a bisimulation between C arr and C ll lets us use code as a specification (6.5.2.1),

and then explore how the specification of each ports over the bisimulation (6.5.2.2).

6.5.2.1 Contract as a Specification

The purpose of any contract optimization is to improve the performance of the code without changing

its behavior within some semantic domain. The semantic domain in which contract behavior must

remain unchaged is, at least in principle, the domain of a formal specification. This almost always means

that changes can be made intentionally, affecting the inner workings of the contract, but extensional

behavior—behavior from an outside or semantic perspective—should remain the same. In the case of our

contracts C arr and C ll, we expect C ll to behave identically to C arr up to an equivalence of data

structures. That precise equivalence, of expected behavior of data structures and contract entrypoints, is

exactly the data held in the contract isomorphism.

To illustrate this point, we construct the contract morphism. To do so we need functions between

entrypoint, state, error, and setup types. Because C arr and C ll differ only in their entrypoint type,

these functions are the identity on all but the entrypoint type; and for the entrypoint type, these are the

functions arr to ll and ll to arr specified above in Section 6.5.1.

1 (* msg, setup, and error morphisms are all identity *)

2 Definition msg_morph : entrypoint → entrypoint := id.

3 Definition setup_morph : setup → setup := id.

4 Definition error_morph : error → error := id.

5

6 (* storage morphisms *)

7 Definition state_morph : owners_arr → owners_ll := arr_to_ll.

8 Definition state_morph_inv : owners_ll → owners_arr := ll_to_arr.

Listing 6.8: The component functions of morphisms between C arr and C ll.

87

With these component functions we can prove the corresponding coherence conditions, and we get

morphisms:

f : ContractMorphism C arr C ll and f inv : ContractMorphism C ll C arr

The key point of data held in this pair of functions, which form a bisimulation, is in the way that they

codify the relationship in functionality between storage and entrypoints in each contract. This is precisely

the data of the argument we made in Section 6.5.1 that C ll was indeed an alternative representation of

C arr.

Consider in particular the behavior of calling (addOwner a). We know from Section 6.5.1 that in C arr

this appends a to the list of owners, while in C ll this inserts a into the implemented linked list. We

have a formal proof of this correspondence in the following two lemmata. The functions add owner arr

and add owner ll are, respectively, the functions that implement the addOwner entrypoint in each of

C arr and C ll.

1 Lemma add_owner_coh : forall a st st’ acts,

2 add_owner_arr a st = Ok (st’, acts) →

3 add_owner_ll a (state_morph st) = Ok (state_morph st’, acts).

1 Lemma add_owner_coh’ : forall a st e,

2 add_owner_arr a st = Err e →

3 add_owner_ll a (state_morph st) = Err e.

Listing 6.9: Two coherence results which show the correspondence of the addOwner entrypoint between

C arr and C ll.

These are coherence results à la Listing 5.3.2: adding a to the state of C arr and then transforming the

state to a linked list is the same as transforming the state to a linked list first and then adding a to

the state of C ll, and vice versa. These results constitute a formal proof that the behavior of the two

contracts is the same up to the equivalence of their data structures for the addOwner entrypoint.

We have analogous proofs for each of the remaining two entrypoints of C arr and C ll. That they give us

a bisimulation of contracts tells us that the behavior of the two contracts is the same up to the equivalence

of their data structures for each entrypoint—and the equivalence of their data structures is precisely a

formal description of how arrays are emulated as linked lists in the state of C ll. How could you possibly

be more precise in formally specifying C ll as an optimization of C arr than by a formal proof like this

that the two contracts are bisimilar?

6.5.2.2 Porting Properties Over the Bisimulation

Standard practice for comparing an optimized contract to its reference implementation would be to apply

the same test suites or formal specification to the new contract and ensure that it passes all tests and

88

still conforms to the formal specification. If the formal specification includes details of the inner workings

of the contract—it probably will, since proving purely extensional properties is undecideable [193]—then

relevant alterations are made to the formal specification to accommodate the new setting. This is a

translation effort, which can be prone to mistranslation and resulting errrors by underspecification, so

instead we would rather see if we can port previously-proved results over a bisimulation.

Indeed, we can and we will do so here with a key property for both contracts: that there be no duplicate

owner IDs in storage. This property is important not only because of the intended contract functionality

of C arr, but also in the optimization of C arr into C ll. Due to the implementation of C ll as a linked

list via a mapping, being able to add a “duplicate” would actually compromise the integrity of the linked

list as a model of an array: the mapping only allows for an owner ID to point to one other owner, so

adding a “duplicate” would mean altering the pointers and unlinking the data structure. That there

not be duplicates is thus an important property both from the perspective of high-level functionality

(with respect to contract permissions and control flow) as well as from the perspective of low-level

implementation correctness (linked list implementation emulating an array).

We first formally verify the reference implementation, C arr, by proving that all reachable contract states

are free of duplicates, codified in the following result.

1 Theorem no_duplciates_arr (cstate : owners_arr) :

2 cstate_reachable C_arr cstate → no_duplciates_arr cstate.

Listing 6.10: All reachable states of C arr have no duplicate owners in storage.

Using the bisimulation, we can now prove the analogous about C ll using morphism induction, a proof

technique that leverages contract morphisms to compare the reachable states of contracts related by

contract morphisms.

Lemma 1 (Morphism Induction). Consider contracts C1 and C2 and a contract morphism

f : ContractMorphism C1 C2.

Then every reachable state cstate 1 of C1 corresponds to a reachable state cstate 2 of C2, related by

the state morphism component of f such that

cstate 2 == f.(state morph) cstate 1.

This lemma is codified as left cm induction in FinCert.4

Because we have a bisimulation, not only do we know that the states of C arr and C ll are related by

state morph described in Section 6.5.2.1, but we know that state morph has an inverse. Thus using the

details of that morphism we can prove that C arr has duplicates in storage if and only if C ll has been

unlinked, the analogous property for duplicates in a linked list. By morphism induction, then, we have

the analogous result on C ll.

4https://github.com/dhsorens/FinCert/blob/main/theories/ContractMorphisms.v

89

https://github.com/dhsorens/FinCert/blob/main/theories/ContractMorphisms.v

1 Theorem no_duplciates_ll (cstate : owners_ll) :

2 cstate_reachable C_ll cstate → no_duplciates_ll cstate.

Listing 6.11: The desired result that all reachable states of C ll have no duplicate owners in storage.

6.6 Conclusion

The efficacy of formal verification on smart contracts depends on being able to correctly specify and carry

out the verification of optimized code. However, code optimized for performance is rarely optimized for

intelligibility, which can make formally verifying optimized code difficult and costly. To remedy this, we

introduced contract isomorphisms, a formal tool that establishes a structural equivalence between smart

contracts, and we proved that contract isomorphisms give us full trace equivalences of contracts. We

then demonstrated how contract isomorphisms can be used to formally specify and verify an optimized

smart contract by proving it extensionally equivalent to its reference implementation. Our example

illustrates the practical application of this framework to a common optimization technique in smart

contract development. It shows how formal proofs of correctness can be ported over a bisimulation and

how a bisimulation enables the use of a contract as a specification. We hope that this work paves the

way for more robust and reliable smart contract verification, enabling practitioners to more easily reason

about optimized contracts in terms of their more intelligible reference implementations.

90

Chapter 7

Conclusion

Smart contracts are challenging to specify and verify for a variety of reasons, which can compromise

their security and is routinely the cause of substantial losses of funds. We identified and targeted three

challenges in formal specification and verification of smart contracts which we aimed to address in this

thesis. These are challenges of:

1. Reasoning about a specification’s completeness (or correctness), which we address by introducing

the logical framework of axiomatization and metaspecification in Chapter 4,

2. Reasoning about contract upgrades, which we addressed by introducing contract morphisms as a

formal tool for specification in Chapter 5, and

3. Reasoning about optimized and performant code, which we addressed by introducing contract

isomorphisms as a tool for proof and specification in Chapter 6.

In each of these cases, we have attempted to address challenges in contract specification and verification

by introducing formal tools that leverage the highly mathematical setting of Coq as a proof assistant.

A major weakness of this work is that the tools presented here remain untested on industry-grade smart

contracts, so while they have been advancements in the theory of smart contract verification it is yet

unclear how practical it would be to use these tools in the wild. This will be the subject of forthcoming

work.

The overarching goal, both of this thesis and any future work, is to make the practice of formal

verification—stating propositions and supplying proofs—more effectual by adding to its mathematical

maturity. Because programs are vulnerable to poor specifications as much as they are to incorrect code,

doing so could make formally verified software more secure by grounding the process of formal verification

deeper in mathematical theory.

91

92

References

[1] 20squares. https://20squares.xyz/. Accessed July 2024.

[2] Certora Prover. https://www.certora.com. Accessed February 2025.

[3] Dexter2 Specification (Mi-Cho-Coq). https://gitlab.com/dexter2tz/dexter2tz/-

/tree/8a5792a56e0143042926c3ca8bff7d7068a541c3.

[4] Objkt.com — The largest Digital Art & Collectible marketplace on Tezos. https://www.objkt.com.

Accessed March 2023.

[5] UN Supports Blockchain Technology for Climate Action — UNFCCC. https://unfccc.int/news/un-

supports-blockchain-technology-for-climate-action, .

[6] UN Supports Blockchain Technology for Climate Action — UNFCCC. https://unfccc.int/news/un-

supports-blockchain-technology-for-climate-action. Accessed July 2023., .

[7] Editors’ Note: Between August 2023 and the time of publication, Likvidity’s “Origin Collection”

of NFTs appear to have been removed from the company’s website. Evidence of their previous

existence can be found in the article, “Likvidi launches Origins, the first ever carbon credit

yielding NFT collection,” at the publication The Tokenizer: https://thetokenizer.io/NFT/

regenerative-finance-company-likvidi-launches-origins-the-first-ever-carbon-credit-yielding-nft-collection.

[8] Gauntlet. https://www.gauntlet.xyz/. Accessed December 2023.

[9] Dexter2 Specification (K Framework). Runtime Verification Inc., August 2022.

[10] Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the Tezos Blockchain. In

2019 International Conference on High Performance Computing & Simulation (HPCS), pages 1–10.

IEEE, 2019.

[11] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards verifying ethereum

smart contract bytecode in Isabelle/HOL. In Proceedings of the 7th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2018, pages 66–77, New York, NY, USA, January

2018. Association for Computing Machinery. ISBN 978-1-4503-5586-5. doi: 10.1145/3167084.

93

https://thetokenizer.io/NFT/regenerative-finance-company-likvidi-launches-origins-the-first-ever-carbon-credit-yielding-nft-collection
https://thetokenizer.io/NFT/regenerative-finance-company-likvidi-launches-origins-the-first-ever-carbon-credit-yielding-nft-collection

[12] Merlinda Andoni, Valentin Robu, David Flynn, Simone Abram, Dale Geach, David Jenkins, Peter

McCallum, and Andrew Peacock. Blockchain technology in the energy sector: A systematic review

of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100:143–174, 2019.

https://doi.org/10.1016/j.rser.2018.10.014.

[13] Guillermo Angeris, Akshay Agrawal, A. Evans, T. Chitra, and Stephen P. Boyd. Constant Function

Market Makers: Multi-Asset Trades via Convex Optimization. 2021.

[14] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An Analysis

of Uniswap markets. Cryptoeconomic Systems, 0(1), April 2021. ISSN 2767-4207,. doi: 10.21428/

58320208.c9738e64.

[15] Guillermo Angeris, Tarun Chitra, and Alex Evans. When Does The Tail Wag The Dog? Curvature

and Market Making. Cryptoeconomic Systems, 2(1), June 2022. ISSN 2767-4207,. doi: 10.21428/

58320208.e9e6b7ce.

[16] Danil Annenkov and Bas Spitters. Deep and shallow embeddings in Coq. TYPES, 2019.

[17] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. Verifying, testing and

running smart contracts in concert. 2020. URL https://cs.au.dk/fileadmin/site_files/

cs/AA_pdf/COBRA_Paper_-_Verifying__testing_and_running_smart_contracts_

in_ConCert.pdf.

[18] Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart contract certification

framework in coq. Proceedings of the 9th ACM SIGPLAN International Conference on Certified

Programs and Proofs, Jan 2020. doi: 10.1145/3372885.3373829. URL http://dx.doi.org/10.

1145/3372885.3373829.

[19] Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. ConCert: A smart contract certification

framework in Coq. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified

Programs and Proofs, CPP 2020, pages 215–228, New York, NY, USA, January 2020. Association

for Computing Machinery. ISBN 978-1-4503-7097-4. doi: 10.1145/3372885.3373829.

[20] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. Extracting smart contracts

tested and verified in Coq. In Proceedings of the 10th ACM SIGPLAN International Conference

on Certified Programs and Proofs, CPP 2021, pages 105–121, New York, NY, USA, January 2021.

Association for Computing Machinery. ISBN 978-1-4503-8299-1. doi: 10.1145/3437992.3439934.

[21] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. Extracting functional

programs from Coq, in Coq. Journal of Functional Programming, 32:e11, 2022/ed. ISSN 0956-7968,

1469-7653. doi: 10.1017/S0956796822000077.

[22] Pedro Antonino, Juliandson Ferreira, Augusto Sampaio, and A. W. Roscoe. Specification is Law:

Safe Creation and Upgrade of Ethereum Smart Contracts. In Software Engineering and Formal

94

https://doi.org/10.1016/j.rser.2018.10.014
https://cs.au.dk/fileadmin/site_files/cs/AA_pdf/COBRA_Paper_-_Verifying__testing_and_running_smart_contracts_in_ConCert.pdf
https://cs.au.dk/fileadmin/site_files/cs/AA_pdf/COBRA_Paper_-_Verifying__testing_and_running_smart_contracts_in_ConCert.pdf
https://cs.au.dk/fileadmin/site_files/cs/AA_pdf/COBRA_Paper_-_Verifying__testing_and_running_smart_contracts_in_ConCert.pdf
http://dx.doi.org/10.1145/3372885.3373829
http://dx.doi.org/10.1145/3372885.3373829

Methods: 20th International Conference, SEFM 2022, Berlin, Germany, September 26–30, 2022,

Proceedings, pages 227–243. Springer, 2022.

[23] Michael J. Ashley and Mark S. Johnson. Establishing a secure, transparent, and autonomous

blockchain of custody for renewable energy credits and carbon credits. IEEE Engineering Manage-

ment Review, 46(4):100–102, 2018.

[24] No Author. Return protocol partners with flowcarbon to offer automated token-based carbon off-

setting to web3 users. (accessed August 2023) https://www.flowcarbon.com/knowcarbon/

return-protocol-partners-with-flowcarbon.

[25] Avraham Eisenberg (@avi eisen). Mango Markets Exploit. https://twitter.com/avi eisen/status/

1581326199682265088, October 2022. Accessed July 2023.

[26] Gbadebo Ayoade, Erick Bauman, Latifur Khan, and Kevin Hamlen. Smart contract defense through

bytecode rewriting. In 2019 IEEE International Conference on Blockchain (Blockchain), pages

384–389. IEEE, 2019.

[27] b. Dexter2 Specification. https://gitlab.com/dexter2tz/dexter2tz/-/blob/master/docs/informal-

spec/dexter2-cpmm.md. Accessed July 2023.

[28] Julian Barreiro-Gomez and Hamidou Tembine. Blockchain token economics: A mean-field-type

game perspective. IEEE Access, 7:64603–64613, 2019.

[29] Massimo Bartoletti and Roberto Zunino. Formal models of bitcoin contracts: A survey. Frontiers

in Blockchain, 2:8, 2019.

[30] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. A minimal core calculus for solidity

contracts. In Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS

2019 International Workshops, DPM 2019 and CBT 2019, Luxembourg, September 26–27, 2019,

Proceedings 14, pages 233–243. Springer, 2019.

[31] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente. Towards a Theory of

Decentralized Finance. In Matthew Bernhard, Andrea Bracciali, Lewis Gudgeon, Thomas Haines,

Ariah Klages-Mundt, Shin’ichiro Matsuo, Daniel Perez, Massimiliano Sala, and Sam Werner, editors,

Financial Cryptography and Data Security. FC 2021 International Workshops, Lecture Notes in

Computer Science, pages 227–232, Berlin, Heidelberg, 2021. Springer. ISBN 978-3-662-63958-0. doi:

10.1007/978-3-662-63958-0\ 20.

[32] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A Theory of Automated

Market Makers in DeFi. In Ferruccio Damiani and Ornela Dardha, editors, Coordination Models and

Languages, Lecture Notes in Computer Science, pages 168–187, Cham, 2021. Springer International

Publishing. ISBN 978-3-030-78142-2. doi: 10.1007/978-3-030-78142-2\ 11.

[33] Massimo Bartoletti, Fabio Fioravanti, Giulia Matricardi, Roberto Pettinau, and Franco Sainas. To-

wards Benchmarking of Solidity Verification Tools. In Bruno Bernardo and Diego Marmsoler, editors,

95

https://www.flowcarbon.com/knowcarbon/return-protocol-partners-with-flowcarbon
https://www.flowcarbon.com/knowcarbon/return-protocol-partners-with-flowcarbon

5th International Workshop on Formal Methods for Blockchains (FMBC 2024), volume 118 of Open

Access Series in Informatics (OASIcs), pages 6:1–6:15, Dagstuhl, Germany, 2024. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik. ISBN 978-3-95977-317-1. doi: 10.4230/OASIcs.FMBC.2024.6. URL

https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2024.6.

[34] Seth Baruch, Jake Leraul, and Slobodan Sudaric. Scaling voluntary carbon markets through

open blockchain platforms. (accessed August 2023) https://dx.doi.org/10.2139/ssrn.

4606815.

[35] Carl Beekhuizen. Ethereum’s energy usage will soon decrease by 99.95%. (accessed August 2023)

https://blog.ethereum.org/2021/05/18/country-power-no-more.

[36] Rob Behnke. Explained: The NowSwap Protocol Hack. https://halborn.com/explained-the-

nowswap-protocol-hack-september-2021/, September 2021. Accessed July 2023.

[37] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. A Survey on Blockchain

Interoperability: Past, Present, and Future Trends. ACM Comput. Surv., 54(8):168:1–168:41,

October 2021. ISSN 0360-0300. doi: 10.1145/3471140.

[38] Chäımaa Benabbou and Önder Gürcan. A survey of verification, validation and testing solutions for

smart contracts. In 2021 Third International Conference on Blockchain Computing and Applications

(BCCA), pages 57–64. IEEE, 2021.

[39] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D Gordon, and Sergio Maffeis.

Refinement types for secure implementations. ACM Transactions on Programming Languages and

Systems (TOPLAS), 33(2):1–45, 2011.

[40] Beosin. Beosin — Global Web3 Security Report 2022. https://medium.com/Beosin com/beosin-

global-web3-security-report-2022-7aa2e4bb13. Accessed July 2023.

[41] Bruno Bernardo, Raphaël Cauderlier, Guillaume Claret, Arvid Jakobsson, Basile Pesin, and

Julien Tesson. Making Tezos Smart Contracts More Reliable with Coq. In Tiziana Margaria and

Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and Validation:

Applications, Lecture Notes in Computer Science, pages 60–72, Cham, 2020. Springer International

Publishing. ISBN 978-3-030-61467-6. doi: 10.1007/978-3-030-61467-6\ 5.

[42] Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-Cho-Coq,

a Framework for Certifying Tezos Smart Contracts. In Emil Sekerinski, Nelma Moreira, José N.

Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José

Campos, Troy Astarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib,

Pedro Monteiro, and David Delmas, editors, Formal Methods. FM 2019 International Workshops,

Lecture Notes in Computer Science, pages 368–379, Cham, 2020. Springer International Publishing.

ISBN 978-3-030-54994-7. doi: 10.1007/978-3-030-54994-7\ 28.

96

https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2024.6
https://dx.doi.org/10.2139/ssrn.4606815
https://dx.doi.org/10.2139/ssrn.4606815
https://blog.ethereum.org/2021/05/18/country-power-no-more

[43] Bruno Bernardo, Raphaël Cauderlier, Basile Pesin, and Julien Tesson. Albert, an intermediate

smart-contract language for the Tezos blockchain, January 2020.

[44] Daniel M Berry. Formal methods: the very idea: Some thoughts about why they work when they

work. Science of computer Programming, 42(1):11–27, 2002.

[45] J.P. Bowen and M.G. Hinchey. Ten commandments of formal methods. Computer, 28(4):56–63,

1995. doi: 10.1109/2.375178.

[46] Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, and Alexander J Summers. Rich

specifications for ethereum smart contract verification. Proceedings of the ACM on Programming

Languages, 5(OOPSLA):1–30, 2021.

[47] BscScan.com. Pancake Bunny Exploiter.

Address 0x158c244b62058330f2c328c720b072d8db2c612f, 2021.

[48] BscScan.com. Spartan Protocol Exploit.

Transaction 0xb64ae25b0d836c25d115a9368319902c972a0215bd108ae17b1b9617dfb93af8, 2021.

[49] Vitalik Buterin. Improving front running resistance of x*y=k market makers - Decentralized

exchanges. https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281,

March 2018. Accessed July 2023.

[50] Raphael Cauderlier. Dexter2 Specification (Mi-Cho-Coq). https://gitlab.com/nomadic-labs/mi-cho-

coq/-/blob/dexter-verification/src/contracts coq/dexter spec.v. Accessed July 2023.

[51] COBRA Research Center. ConCert. https://github.com/AU-COBRA/ConCert. Accessed July

2023.

[52] Martán Ceresa and César Sánchez. Multi: A Formal Playground for Multi-Smart Contract

Interaction, July 2022.

[53] Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila Galanopoulou, Arthur

Gervais, Dimitris Mitropoulos, and Benjamin Livshits. Smart Contract and DeFi Security Tools:

Do They Meet the Needs of Practitioners? In Proceedings of the 46th IEEE/ACM International

Conference on Software Engineering, pages 1–13, 2024.

[54] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on ethereum systems

security: Vulnerabilities, attacks, and defenses. ACM Computing Surveys (CSUR), 53(3):1–43,

2020.

[55] J Craig Cleaveland. Mathematical specifications. ACM SIGPLAN Notices, 15(12):31–42, 1980.

[56] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In International

Conference on Certified Programs and Proofs, pages 147–162. Springer, 2013.

97

[57] Consensys. COP27: Leading Technology Companies Launch ‘Ethereum Cli-

mate Platform’ Initiative to Address Ethereum’s Former Proof of Work Car-

bon Emissions. (accessed August 2023) https://consensys.io/blog/

cop27-leading-technology-companies-launch-ethereum-climate-platform-initiative-to-address-ethereums-former-proof-of-work-carbon-emissions.

[58] Tim Copeland. Dex protocol kyberswap appears to lose $47 million in possible ex-

ploit. https://www.theblock.co/post/264432/dex-protocol-kyberswap-appears-to-lose-47-million-in-

possible-exploit. Accessed December 2023.

[59] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004.

URL http://coq.inria.fr. Version 8.0.

[60] Lúıs Pedro Arrojado da Horta, João Santos Reis, Simão Melo de Sousa, and Mário Pereira. A

tool for proving michelson smart contracts in why3. In 2020 IEEE International Conference on

Blockchain (Blockchain), pages 409–414. IEEE, 2020.

[61] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breiden-

bach, and Ari Juels. Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Extractable

Value, and Consensus Instability. In 2020 IEEE Symposium on Security and Privacy (SP), pages

910–927, May 2020. doi: 10.1109/SP40000.2020.00040.

[62] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,

2008.

[63] Monika Di Angelo and Gernot Salzer. A survey of tools for analyzing ethereum smart contracts. In

2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON),

pages 69–78. IEEE, 2019.

[64] Andres Diaz-Valdivia and Marta Poblet. Governance of ReFi Ecosystem and the Integrity of

Voluntary Carbon Markets as a Common Resource. doi: 10.2139/ssrn.4286167, November 2022.

[65] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, Vikram Saraph, and Eric Koskinen. Proof-

Carrying Smart Contracts. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea

Bracciali, Federico Pintore, and Massimiliano Sala, editors, Financial Cryptography and Data

Security, Lecture Notes in Computer Science, pages 325–338, Berlin, Heidelberg, 2019. Springer.

ISBN 978-3-662-58820-8. doi: 10.1007/978-3-662-58820-8\ 22.

[66] David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and Emma Zhong. Fast and

reliable formal verification of smart contracts with the move prover. In Dana Fisman and Grigore

Rosu, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 183–200,

Cham, 2022. Springer International Publishing. ISBN 978-3-030-99524-9.

[67] Xiaoqun Dong, Rachel Chi Kiu Mok, Durreh Tabassum, Pierre Guigon, Eduardo Ferreira, Chan-

dra Shekhar Sinha, Neeraj Prasad, Joe Madden, Tom Baumann, Jason Libersky, Eamonn Mc-

98

https://consensys.io/blog/cop27-leading-technology-companies-launch-ethereum-climate-platform-initiative-to-address-ethereums-former-proof-of-work-carbon-emissions
https://consensys.io/blog/cop27-leading-technology-companies-launch-ethereum-climate-platform-initiative-to-address-ethereums-former-proof-of-work-carbon-emissions
http://coq.inria.fr

Cormick, and Jefferson Cohen. Blockchain and emerging digital technologies for enhancing post-2020

climate markets. https://tinyurl.com/bdz5wczb.

[68] Gregor Dorfleitner and Diana Braun. Fintech, digitalization and blockchain: Possible applications for

green finance. In The Rise of Green Finance in Europe, Palgrave Studies in Impact Finance, pages

207–237. Palgrave Macmillan, 2019. https://doi.org/10.1007/978-3-030-22510-0_9.

[69] Gregor Dorfleitner, Franziska Muck, and Isabel Scheckenbach. Blockchain applications for climate

protection: A global empirical investigation. Renewable and Sustainable Energy Reviews, 149:

111378, October 2021. ISSN 1364-0321. doi: 10.1016/j.rser.2021.111378.

[70] Gregor Dorfleitner, Franziska Muck, and Isabel Scheckenbach. Blockchain applications for climate

protection: A global empirical investigation. Renewable and Sustainable Energy Reviews, 149:

111378, 2021. https://doi.org/10.1016/j.rser.2021.111378.

[71] etherscan.io. Beanstalk Exploit.

Transaction 0xcd314668aaa9bbfebaf1a0bd2b6553d01dd58899c508d4729fa7311dc5d33ad7.

[72] etherscan.io. Beanstalk Exploit.

Transaction 0xcd314668aaa9bbfebaf1a0bd2b6553d01dd58899c508d4729fa7311dc5d33ad7, 2022.

[73] etherscan.io. Nomad Bridge Exploit.

Transaction 0xa5fe9d044e4f3e5aa5bc4c0709333cd2190cba0f4e7f16bcf73f49f83e4a5460, 2022.

[74] Alex Evans, Guillermo Angeris, and Tarun Chitra. Optimal Fees for Geometric Mean Market

Makers. In Matthew Bernhard, Andrea Bracciali, Lewis Gudgeon, Thomas Haines, Ariah Klages-

Mundt, Shin’ichiro Matsuo, Daniel Perez, Massimiliano Sala, and Sam Werner, editors, Financial

Cryptography and Data Security. FC 2021 International Workshops, Lecture Notes in Computer

Science, pages 65–79, Berlin, Heidelberg, 2021. Springer. ISBN 978-3-662-63958-0. doi: 10.1007/

978-3-662-63958-0\ 6.

[75] Alex Evans, Guillermo Angeris, and Tarun Chitra. Optimal Fees for Geometric Mean Market Makers.

In Financial Cryptography and Data Security. FC 2021 International Workshops, Lecture Notes in

Computer Science, pages 65–79, Berlin, Heidelberg, 2021. Springer. ISBN 978-3-662-63958-0. doi:

10.1007/978-3-662-63958-0\ 6.

[76] Alyssa Exposito. What is regenerative finance (refi) and how can it im-

pact nfts and web3? Cointelegraph. https://cointelegraph.com/news/

what-is-regenerative-finance-refi-and-how-can-it-impact-nfts-and-web3.

[77] Beanstalk Farms. Beanstalk Governance Exploit. https://bean.money/blog/beanstalk-governance-

exploit. Accessed July 2023.

[78] James H Fetzer. Program verification: The very idea. Communications of the ACM, 31(9):1048–1063,

1988.

99

https://doi.org/10.1007/978-3-030-22510-0_9
https://doi.org/10.1016/j.rser.2021.111378
https://cointelegraph.com/news/what-is-regenerative-finance-refi-and-how-can-it-impact-nfts-and-web3
https://cointelegraph.com/news/what-is-regenerative-finance-refi-and-how-can-it-impact-nfts-and-web3

[79] Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where programs meet provers. In Program-

ming Languages and Systems: 22nd European Symposium on Programming, ESOP 2013, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,

Italy, March 16-24, 2013. Proceedings 22, pages 125–128. Springer, 2013.

[80] Uranium Finance. Uranium Finance Exploit. https://uraniumfinance.medium.com/exploit-

d3a88921531c, April 2021. Accessed July 2023.

[81] Luciano Floridi. The Blackwell guide to the philosophy of computing and information. John Wiley

& Sons, 2008.

[82] Tim Freeman and Frank Pfenning. Refinement types for ml. In Proceedings of the ACM SIGPLAN

1991 conference on Programming language design and implementation, pages 268–277, 1991.

[83] Robin Fritsch and Roger Wattenhofer. A Note on Optimal Fees for Constant Function Market

Makers. DeFi@CCS, 2021. doi: 10.1145/3464967.3488589.

[84] Robin Frtisch, Samuel Käser, and Roger Wattenhofer. The economics of automated market makers.

In Proceedings of the 4th ACM Conference on Advances in Financial Technologies, pages 102–110,

2022.

[85] John Fullerton. Regenerative Capitalism: How Universal Principles And Patterns

Will Shape Our New Economy. Greenwich, CT: Capital Institute, 2015. (Avail-

able at https://capitalinstitute.org/wp-content/uploads/2015/04/

2015-Regenerative-Capitalism-4-20-15-final.pdf).

[86] Doug Galen, Nikki Brand, Lyndsey Boucherle, Rose Davis, Natalie Do, Ben El-Baz, Isadora Kimura,

Kate Wharton, and Jay Lee. Blockchain for social impact: Moving beyond the hype. Center for

Social Innovation, RippleWorks, 2018.

[87] Jingxing Gan, Gerry Tsoukalas, and Serguei Netessine. Decentralized platforms: Governance,

tokenomics, and ico design. Management Science, 2023.

[88] Hubert Garavel and Frédéric Lang. Equivalence checking 40 years after: A review of bisimulation

tools. A Journey from Process Algebra via Timed Automata to Model Learning: Essays Dedicated

to Frits Vaandrager on the Occasion of His 60th Birthday, pages 213–265, 2022.

[89] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. A Survey on Formal Verification

for Solidity Smart Contracts. In 2021 Australasian Computer Science Week Multiconference, ACSW

’21, pages 1–10, New York, NY, USA, February 2021. Association for Computing Machinery. ISBN

978-1-4503-8956-3. doi: 10.1145/3437378.3437879.

[90] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In

Proceedings of the 33rd annual ACM/IEEE symposium on logic in computer science, pages 472–481,

2018.

100

https://capitalinstitute.org/wp-content/uploads/2015/04/2015-Regenerative-Capitalism-4-20-15-final.pdf
https://capitalinstitute.org/wp-content/uploads/2015/04/2015-Regenerative-Capitalism-4-20-15-final.pdf

[91] Leah V Gibbons. Regenerative—The New Sustainable? Sustainability, 12(13):5483, 2020. https:

//doi.org/10.3390/su12135483.

[92] Joseph A Goguen. More thoughts on specification and verification. ACM SIGSOFT Software

Engineering Notes, 6(3):38–41, 1981.

[93] Florian Gronde. Flash loans and decentralized lending protocols: An in-depth analysis. Master’s

thesis, Center for Innovative Finance, University of Basel Basel, Switzerland, 2020.

[94] World Bank Group. Blockchain and Emerging Digital Technologies for Enhancing Post-2020 Climate

Markets. (Washington, DC: World Bank), 2018. http://hdl.handle.net/10986/29499.

[95] Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and Arthur Gervais. The

Decentralized Financial Crisis. In 2020 Crypto Valley Conference on Blockchain Technology

(CVCBT), pages 1–15, June 2020. doi: 10.1109/CVCBT50464.2020.00005.

[96] Samuel Haig. PancakeBunny tanks 96% following $200M flash loan exploit.

https://cointelegraph.com/news/pancakebunny-tanks-96-following-200m-flash-loan-exploit,

May 2021.

[97] Anthony Hall. Seven myths of formal methods. IEEE software, 7(5):11–19, 1990.

[98] Osman Hasan and Sofiene Tahar. Formal verification methods. In Encyclopedia of Information

Science and Technology, Third Edition, pages 7162–7170. IGI global, 2015.

[99] Lioba Heimbach, Ye Wang, and Roger Wattenhofer. Behavior of Liquidity Providers in Decentralized

Exchanges. arXiv:2105.13822, October 2021.

[100] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.

ACM, 32(1):137–161, January 1985. ISSN 0004-5411. doi: 10.1145/2455.2460.

[101] Maurice Herlihy. Atomic Cross-Chain Swaps. In Proceedings of the 2018 ACM Symposium on

Principles of Distributed Computing, PODC ’18, pages 245–254, New York, NY, USA, July 2018.

Association for Computing Machinery. ISBN 978-1-4503-5795-1. doi: 10.1145/3212734.3212736.

[102] Celine Herweijer, Dominic Waughray, and Sheila Warren. Building block(chain)s for a better planet.

(accessed August 2023) https://www3.weforum.org/docs/WEF_Building-Blockchains.

pdf, 2018.

[103] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy

Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony

J. H. Simons, Sergiy Vilkomir, Martin R. Woodward, and Hussein Zedan. Using formal specifications

to support testing. ACM Comput. Surv., 41(2), feb 2009. ISSN 0360-0300. doi: 10.1145/1459352.

1459354. URL https://doi.org/10.1145/1459352.1459354.

101

https://doi.org/10.3390/su12135483
https://doi.org/10.3390/su12135483
http://hdl.handle.net/10986/29499
https://www3.weforum.org/docs/WEF_Building-Blockchains.pdf
https://www3.weforum.org/docs/WEF_Building-Blockchains.pdf
https://doi.org/10.1145/1459352.1459354

[104] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight

Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, and Grigore Rosu. KEVM:

A Complete Formal Semantics of the Ethereum Virtual Machine. In 2018 IEEE 31st Computer

Security Foundations Symposium (CSF), pages 204–217, July 2018. doi: 10.1109/CSF.2018.00022.

[105] Yoichi Hirai. Defining the Ethereum Virtual Machine for Interactive Theorem Provers. In Michael

Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller, Peter Y.A. Ryan, Vanessa Teague, Andrea

Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakobsson, editors, Financial Cryptog-

raphy and Data Security, volume 10323, pages 520–535. Springer International Publishing, Cham,

2017. ISBN 978-3-319-70277-3 978-3-319-70278-0. doi: 10.1007/978-3-319-70278-0\ 33.

[106] Igor Igamberdiev (@FrankResearcher). BUNNY Exploit Report.

https://twitter.com/FrankResearcher/

status/1395196961108774915, May 2021. Accessed July 2023.

[107] Immunefi. Dfx finance rounding error bugfix review. https://medium.com/immunefi/dfx-finance-

rounding-error-bugfix-review-17ba5ffb4114. Accessed December 2023.

[108] Immunefi. Hack Analysis: Nomad Bridge, August 2022. https://medium.com/immunefi/hack-

analysis-nomad-bridge-august-2022-5aa63d53814a, January 2023.

[109] PeckShield Inc. The Spartan Incident: Root Cause Analysis. https://peckshield-

94632.medium.com/the-spartan-incident-root-cause-analysis-b14135d3415f, May 2021. Accessed

July 2023.

[110] Runtime Verification Inc. Dexter2 Specification (K Framework). https://github.com/runtime

verification/michelson-semantics/blob/a46be4a542e01b17a93134395c889df1468a067b/tests/proofs/

dexter/dexter-spec.md. Accessed July 2023.

[111] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, and Mooly Sagiv.

Effectively-propositional reasoning about reachability in linked data structures. In Natasha Sharygina

and Helmut Veith, editors, Computer Aided Verification, pages 756–772, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg. ISBN 978-3-642-39799-8.

[112] Oussama Jebbar, Ferhat Khendek, and Maria Toeroe. Upgrade of highly available systems: Formal

methods at the rescue. In 2017 IEEE International Conference on Information Reuse and Integration

(IRI), pages 270–274. IEEE, 2017.

[113] John X. Response to verra’s may 25th announcement. (accessed August 2023) https://blog.

toucan.earth/response-to-verras-announcement/.

[114] Ela Khodai. Toucan’s carbon ecosystem is coming to celo! (accessed August 2023) https:

//blog.toucan.earth/toucans-carbon-ecosystem-celo/, .

102

https://blog.toucan.earth/response-to-verras-announcement/
https://blog.toucan.earth/response-to-verras-announcement/
https://blog.toucan.earth/toucans-carbon-ecosystem-celo/
https://blog.toucan.earth/toucans-carbon-ecosystem-celo/

[115] Ela Khodai. Toucan regen network: Expanding liquidity for tokenized

carbon credits. (accessed August 2023) https://blog.toucan.earth/

toucan-regen-network-bridging-carbon-credits/, .

[116] Daniel Kirste, Niclas Kannengießer, Ricky Lamberty, and Ali Sunyaev. How automated market mak-

ers approach the thin market problem in cryptoeocnomic systems. arXiv preprint arXiv:2309.12818,

2023.

[117] Samela Kivilo. Designing a Token Economy: Incentives, Governance and Tokenomics. PhD thesis,

06 2023.

[118] Ralf Kneuper. Limits of formal methods. Formal Aspects of Computing, 9:379–394, 1997.

[119] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No Lee. Systematic

review of security vulnerabilities in ethereum blockchain smart contract. IEEE Access, 10:6605–6621,

2022.

[120] Kim G Larsen. Proof systems for satisfiability in hennessy-milner logic with recursion. Theoretical

Computer Science, 72(2-3):265–288, 1990.

[121] Ximeng Li, Zhiping Shi, Qianying Zhang, Guohui Wang, Yong Guan, and Ning Han. Towards

Verifying Ethereum Smart Contracts at Intermediate Language Level. In Yamine Ait-Ameur and

Shengchao Qin, editors, Formal Methods and Software Engineering, Lecture Notes in Computer

Science, pages 121–137, Cham, 2019. Springer International Publishing. ISBN 978-3-030-32409-4.

doi: 10.1007/978-3-030-32409-4\ 8.

[122] Barbara Liskov and Stephen Zilles. Specification techniques for data abstractions. In Proceedings

of the international conference on Reliable software, pages 72–87, 1975.

[123] Kristof Lommers, Jack Kim, and Mohamed Baioumy. Market Making in NFTs. Available at SSRN

4226987, 2022.

[124] Anil Madhavapeddy. 4c in the gold standard working groups on digital solutions

for carbon markets. (accessed August 2023) https://4c.cst.cam.ac.uk/news/

4c-gold-standard-working-groups-digital-solutions-carbon-markets.

[125] Nicolas Magaud and Yves Bertot. Changing data structures in type theory: A study of natural

numbers. In International Workshop on Types for Proofs and Programs, pages 181–196. Springer,

2000.

[126] Shaurya Malwa. How Market Manipulation Led to a $100M Exploit on Solana DeFi Exchange

Mango. https://www.coindesk.com/markets/2022/10/12/how-market-manipulation-led-to-a-100m-

exploit-on-solana-defi-exchange-mango/, October 2022.

[127] Gary E. Marchant, Zachary Cooper, and Philip J. VI Gough-Stone. Bringing technological

transparency to tenebrous markets: The case for using blockchain to validate carbon credit trading

103

https://blog.toucan.earth/toucan-regen-network-bridging-carbon-credits/
https://blog.toucan.earth/toucan-regen-network-bridging-carbon-credits/
https://4c.cst.cam.ac.uk/news/4c-gold-standard-working-groups-digital-solutions-carbon-markets
https://4c.cst.cam.ac.uk/news/4c-gold-standard-working-groups-digital-solutions-carbon-markets

markets. Natural Resources Journal, 62(2):159–182, 2022. https://digitalrepository.unm.

edu/nrj/vol62/iss2/2.

[128] Diego Marmsoler and Achim D Brucker. A denotational semantics of solidity in isabelle/hol. In

Software Engineering and Formal Methods: 19th International Conference, SEFM 2021, Virtual

Event, December 6–10, 2021, Proceedings 19, pages 403–422. Springer, 2021.

[129] Diego Marmsoler and Achim D Brucker. Isabelle/solidity: A deep embedding of solidity in

isabelle/hol. Archive of Formal Proofs, 2022.

[130] Diego Marmsoler and Billy Thornton. Sscalc: A calculus for solidity smart contracts. In International

Conference on Software Engineering and Formal Methods, pages 184–204. Springer, 2023.

[131] Julie Maupin. The g20 countries should engage with blockchain technologies to build an inclusive,

transparent, and accountable digital economy for all, 2017. https://ideas.repec.org/p/

zbw/ifwedp/201748.html.

[132] Stephen McCamant and Michael D Ernst. Predicting problems caused by component upgrades.

In Proceedings of the 9th European software engineering conference held jointly with 11th ACM

SIGSOFT international symposium on Foundations of software engineering, pages 287–296, 2003.

[133] Paul R. McMullin and John D. Gannon. Combining testing with formal specifications: A case

study. IEEE Transactions on Software Engineering, (3):328–335, 1983.

[134] Micorriza Association. Nftree – offset co2 with nft certificates. (accessed August 2023) https:

//nftree.org/index.php/proposal/.

[135] Robin Milner. Communication and concurrency. Prentice Hall International, 13, 1989.

[136] Nick Mudge. EIP-2535: Diamonds, Multi-Facet Proxy. https://eips.ethereum.org/EIPS/eip-2535.

Accessed July 2023.

[137] Dominic P Mulligan, Scott Owens, Kathryn E Gray, Tom Ridge, and Peter Sewell. Lem: reusable

engineering of real-world semantics. ACM SIGPLAN Notices, 49(9):175–188, 2014.

[138] Yvonne Murray and David A. Anisi. Survey of Formal Verification Methods for Smart Contracts

on Blockchain. In 2019 10th IFIP International Conference on New Technologies, Mobility and

Security (NTMS), pages 1–6, June 2019. doi: 10.1109/NTMS.2019.8763832.

[139] Niki Naderi and Yifeng Tian. Leveraging blockchain technology and tokenizing green assets to

fill the green finance gap. Energy Research Letters, 3(3):33907, 2022. https://doi.org/10.

46557/001c.33907.

[140] Matthieu Nadini, Laura Alessandretti, Flavio Di Giacinto, Mauro Martino, Luca Maria Aiello,

and Andrea Baronchelli. Mapping the NFT revolution: Market trends, trade networks, and visual

features. Sci Rep, 11(1):20902, October 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-00053-8.

104

https://digitalrepository.unm.edu/nrj/vol62/iss2/2
https://digitalrepository.unm.edu/nrj/vol62/iss2/2
https://ideas.repec.org/p/zbw/ifwedp/201748.html
https://ideas.repec.org/p/zbw/ifwedp/201748.html
https://nftree.org/index.php/proposal/
https://nftree.org/index.php/proposal/
https://doi.org/10.46557/001c.33907
https://doi.org/10.46557/001c.33907

[141] Nihar Neelakanti. Ecosapiens whitepaper. (accessed August 2023) https://mirror.xyz/

0x22fbdE4fBB8FF152638cf8e6bB051FF0967c02D2/cyYJOgWQybssWx1NDRZwq3YqSK_

ZVgdxayGTcUMG8g8.

[142] Zeinab Nehai and François Bobot. Deductive Proof of Ethereum Smart Contracts Using Why3,

August 2019.

[143] PR Newswire. Major win for the climate: Voluntary market closes door

to hfc-23 projects. (accessed August 2023) https://verra.org/press/

major-win-climate-voluntary-market-closes-door-hfc-23-projects/.

[144] Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Formalising Decentralised Exchanges in Coq,

March 2022.

[145] Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Formalising Decentralised Exchanges in Coq.

In Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and

Proofs, pages 290–302, 2023.

[146] Jakob Botsch Nielsen and Bas Spitters. Smart contract interactions in coq. In International

Symposium on Formal Methods, pages 380–391. Springer, 2019.

[147] Jakob Botsch Nielsen and Bas Spitters. Smart contract interactions in Coq. In International

Symposium on Formal Methods, pages 380–391. Springer, 2019.

[148] Markus Nissl, Emanuel Sallinger, Stefan Schulte, and Michael Borkowski. Towards Cross-Blockchain

Smart Contracts. In 2021 IEEE International Conference on Decentralized Applications and

Infrastructures (DAPPS), pages 85–94, August 2021. doi: 10.1109/DAPPS52256.2021.00015.

[149] No Author. Arbol. (accessed August 2023) https://www.arbol.io/, .

[150] No Author. Cambridge Bitcoin Electricity Consumption Index (CBECI). (accessed August 2023)

https://ccaf.io/cbeci/index, .

[151] No Author. Carbovalent Documentation. (accessed August 2023) https://docs.carbovalent.

com/, .

[152] No Author. Cascadia carbon. (accessed August 2023) https://cascadiacarbon.com/, .

[153] No Author. Celostrials. (accessed August 2023) https://celostrials.com/, .

[154] No Author. Climatecoin. (accessed August 2023) https://www.climatecoin.io/, .

[155] No Author. Climate collective. (accessed August 2023) https://climatecollective.org, .

[156] No Author. Crypto climate accord. (accessed August 2023) https://cryptoclimate.org/.

[157] No Author. dClimate. (accessed August 2023) https://www.dclimate.net/, .

[158] No Author. Filecoin green. (accessed August 2023) https://green.filecoin.io, .

105

https://mirror.xyz/0x22fbdE4fBB8FF152638cf8e6bB051FF0967c02D2/cyYJOgWQybssWx1NDRZwq3YqSK_ZVgdxayGTcUMG8g8
https://mirror.xyz/0x22fbdE4fBB8FF152638cf8e6bB051FF0967c02D2/cyYJOgWQybssWx1NDRZwq3YqSK_ZVgdxayGTcUMG8g8
https://mirror.xyz/0x22fbdE4fBB8FF152638cf8e6bB051FF0967c02D2/cyYJOgWQybssWx1NDRZwq3YqSK_ZVgdxayGTcUMG8g8
https://verra.org/press/major-win-climate-voluntary-market-closes-door-hfc-23-projects/
https://verra.org/press/major-win-climate-voluntary-market-closes-door-hfc-23-projects/
https://www.arbol.io/
https://ccaf.io/cbeci/index
https://docs.carbovalent.com/
https://docs.carbovalent.com/
https://cascadiacarbon.com/
https://celostrials.com/
https://www.climatecoin.io/
https://climatecollective.org
https://cryptoclimate.org/
https://www.dclimate.net/
https://green.filecoin.io

[159] No Author. Flow3rs. (accessed August 2023) https://www.flow3rs.io/, .

[160] No Author. Flowcarbon docs. (accessed August 2023) https://docs.flowcarbon.com/, .

[161] No Author. Gold standard announces proposals to allow creation of digital tokens for

carbon credits. (accessed August 2023) https://www.goldstandard.org/blog-item/

gold-standard-announces-proposals-allow-creation-digital-tokens-carbon-credits,

.

[162] No Author. Klimadao documentation. (accessed August 2023) https://docs.klimadao.

finance/, .

[163] No Author. Unlock the value of carbon credits to secure climate finance. (accessed August 2023)

https://kumo.earth/, .

[164] No Author. Official likvidity documentation. (accessed August 2023) https://docs.liquity.

org/, .

[165] No Author. Mco2 token documentation. (accessed August 2023) https://mco2token.moss.

earth/, .

[166] No Author. The merge. (accessed August 2023) https://ethereum.org/en/upgrades/

merge/, .

[167] No Author. Metamazonia. (accessed August 2023) https://www.metamazonia.io, .

[168] No Author. Nftreehaus. (accessed August 2023) https://www.nftreehaus.com/, .

[169] No Author. Nftrees. (accessed August 2023) https://nftrees.cc/, .

[170] No Author. Nori whitepaper. (accessed August 2023) https://nori.com/whitepaper, .

[171] No Author. Open forest protocol documentation. (accessed August 2023) https://www.

openforestprotocol.org/documentation, .

[172] No Author. Blockchain for a better planet. (accessed August 2023) https://saveplanetearth.

io/, .

[173] No Author. Regen ledger documentation. (accessed August 2023) https://docs.regen.

network/, .

[174] No Author. Rewilder foundation docs. (accessed August 2023) https://docs.rewilder.xyz/,

.

[175] No Author. Toucan. (accessed August 2023) https://docs.toucan.earth/, .

[176] No Author. Verra addresses crypto instruments and tokens. (accessed August 2023) https:

//verra.org/verra-addresses-crypto-instruments-and-tokens/.

106

https://www.flow3rs.io/
https://docs.flowcarbon.com/
https://www.goldstandard.org/blog-item/gold-standard-announces-proposals-allow-creation-digital-tokens-carbon-credits
https://www.goldstandard.org/blog-item/gold-standard-announces-proposals-allow-creation-digital-tokens-carbon-credits
https://docs.klimadao.finance/
https://docs.klimadao.finance/
https://kumo.earth/
https://docs.liquity.org/
https://docs.liquity.org/
https://mco2token.moss.earth/
https://mco2token.moss.earth/
https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/upgrades/merge/
https://www.metamazonia.io
https://www.nftreehaus.com/
https://nftrees.cc/
https://nori.com/whitepaper
https://www.openforestprotocol.org/documentation
https://www.openforestprotocol.org/documentation
https://saveplanetearth.io/
https://saveplanetearth.io/
https://docs.regen.network/
https://docs.regen.network/
https://docs.rewilder.xyz/
https://docs.toucan.earth/
https://verra.org/verra-addresses-crypto-instruments-and-tokens/
https://verra.org/verra-addresses-crypto-instruments-and-tokens/

[177] Nori. Pilot croplands methodology, version 1.3. (accessed August 2023) https://nori.com/

resources/croplands-methodology.

[178] Eric Nowak. Voluntary Carbon Markets. https://tinyurl.com/k8sbhemf, March 2022.

[179] Eric Nowak. Voluntary Carbon Markets. https://tinyurl.com/k8sbhemf, March 2022.

[180] Yuting Pan, Xiaosong Zhang, Yi Wang, Junhui Yan, Shuonv Zhou, Guanghua Li, and Jiexiong

Bao. Application of blockchain in carbon trading. Energy Procedia, 158:4286–4291, 2019. https:

//doi.org/10.1016/j.egypro.2019.01.509.

[181] pancakebunny.finance (@PancakeBunnyFin). BUNNY Exploit Report. https://twitter.com/Pancake

BunnyFin/status/1395173389208334342, May 2021. Accessed July 2023.

[182] Arim Park and Huan Li. The effect of blockchain technology on supply chain sustainability

performances. Sustainability, 13(4):1726, 2021.

[183] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. A formal verification

tool for ethereum vm bytecode. In Proceedings of the 2018 26th ACM joint meeting on european

software engineering conference and symposium on the foundations of software engineering, pages

912–915, 2018.

[184] Adele Parmentola, Antonella Petrillo, Ilaria Tutore, and Fabio De Felice. Is blockchain able to

enhance environmental sustainability? A systematic review and research agenda from the perspective

of Sustainable Development Goals (SDGs). Business Strategy and the Environment, 31(1):194–217,

2022.

[185] Charles Parsons. Informal axiomatization, formalization and the concept of truth. Synthese, pages

27–47, 1974.

[186] Macauley Peterson. Latest DeFi exploits show audits are no guarantee.

https://blockworks.co/news/audits-cannot-guarantee-defi-exploits. Accessed November 2023.

[187] Siraphob Phipathananunth. Using Mutations to Analyze Formal Specifications. In Companion

Proceedings of the 2022 ACM SIGPLAN International Conference on Systems, Programming,

Languages, and Applications: Software for Humanity, SPLASH Companion 2022, pages 81–83, New

York, NY, USA, December 2022. Association for Computing Machinery. ISBN 978-1-4503-9901-2.

doi: 10.1145/3563768.3563960.

[188] Likvidi Carbon Platform. Likvidity Origins Collection. (accessed August 2023) https://www.

likvidi.com/nfts/.

[189] Andrei-Dragoş Popescu. Decentralized finance (defi)—the lego of finance. Social Sciences and

Education Research Review, 7(1):321–349, 2020.

[190] Daniele Pusceddu and Massimo Bartoletti. Formalizing automated market makers in the lean 4

theorem prover. arXiv preprint arXiv:2402.06064, 2024.

107

https://nori.com/resources/croplands-methodology
https://nori.com/resources/croplands-methodology
https://doi.org/10.1016/j.egypro.2019.01.509
https://doi.org/10.1016/j.egypro.2019.01.509
https://www.likvidi.com/nfts/
https://www.likvidi.com/nfts/

[191] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the DeFi Ecosystem

with Flash Loans for Fun and Profit. In Nikita Borisov and Claudia Diaz, editors, Financial

Cryptography and Data Security, Lecture Notes in Computer Science, pages 3–32, Berlin, Heidelberg,

2021. Springer. ISBN 978-3-662-64322-8. doi: 10.1007/978-3-662-64322-8\ 1.

[192] Maria Ribeiro, Pedro Adão, and Paulo Mateus. Formal Verification of Ethereum Smart Contracts

Using Isabelle/HOL. In Logic, Language, and Security: Essays Dedicated to Andre Scedrov on the

Occasion of His 65th Birthday, pages 71–97. Springer, 2020.

[193] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems. Transactions

of the American Mathematical society, 74(2):358–366, 1953.

[194] Talia Ringer. Proof Repair. University of Washington, 2021.

[195] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Adapting proof automation to

adapt proofs. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified

Programs and Proofs, pages 115–129, 2018.

[196] Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. Proof repair

across type equivalences. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, pages 112–127, 2021.

[197] Grigore Ros,u and Traian Florin S, erbănută. An overview of the k semantic framework. The Journal

of Logic and Algebraic Programming, 79(6):397–434, 2010.

[198] John Rushby. Theorem proving for verification. In Summer School on Modeling and Verification of

Parallel Processes, pages 39–57. Springer, 2000.

[199] Sara Saberi, Mahtab Kouhizadeh, Joseph Sarkis, and Lejia Shen. Blockchain technology and

its relationships to sustainable supply chain management. International Journal of Production

Research, 57(7):2117–2135, 2019.

[200] Kanis Saengchote. Where do defi stablecoins go? a closer look at what defi composability really

means. (accessed August 2023) https://doi.org/10.2139/ssrn.3893487.

[201] @samczsun. Nomad Tweet Thread. https://twitter.com/samczsun/status/1554252024723546112,

August 2022. Accessed July 2023.

[202] Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures in Computer Science,

8(5):447–479, October 1998. ISSN 1469-8072, 0960-1295. doi: 10.1017/S0960129598002527.

[203] Davide Sangiorgi. Introduction to bisimulation and coinduction. Cambridge University Press, 2011.

[204] Soheil Saraji and Mike Borowczak. A blockchain-based carbon credit ecosystem, 2021. https:

//doi.org/10.48550/arXiv.2107.00185.

108

https://doi.org/10.2139/ssrn.3893487
https://doi.org/10.48550/arXiv.2107.00185
https://doi.org/10.48550/arXiv.2107.00185

[205] Christophe Schinckus. The good, the bad and the ugly: An overview of the sustainability of

blockchain technology. Energy Research & Social Science, 69:101614, 2020. ISSN 2214-6296.

https://doi.org/10.1016/j.erss.2020.101614.

[206] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Temporal Properties of Smart Contracts. In Tiziana

Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification

and Validation. Industrial Practice, Lecture Notes in Computer Science, pages 323–338, Cham, 2018.

Springer International Publishing. ISBN 978-3-030-03427-6. doi: 10.1007/978-3-030-03427-6\ 25.

[207] Amritraj Singh, Reza M Parizi, Qi Zhang, Kim-Kwang Raymond Choo, and Ali Dehghantanha.

Blockchain smart contracts formalization: Approaches and challenges to address vulnerabilities.

Computers & Security, 88:101654, 2020.

[208] Amritraj Singh, Reza M. Parizi, Qi Zhang, Kim-Kwang Raymond Choo, and Ali Dehghantanha.

Blockchain smart contracts formalization: Approaches and challenges to address vulnerabilities.

Computers & Security, 88:101654, January 2020. ISSN 0167-4048. doi: 10.1016/j.cose.2019.101654.

[209] Adam Sipthorpe, Sabine Brink, Tyler Van Leeuwen, and Iain Staffell. Blockchain solutions for

carbon markets are nearing maturity. One Earth, 5(7):779–791, July 2022. ISSN 2590-3330,

2590-3322. doi: 10.1016/j.oneear.2022.06.004.

[210] Adam Sipthorpe, Sabine Brink, Tyler Van Leeuwen, and Iain Staffell. Blockchain solutions for

carbon markets are nearing maturity. One Earth, 5(7):779–791, 2022. https://doi.org/10.

1016/j.oneear.2022.06.004.

[211] Solidity Team. Solidity Documentation, 2023. https://docs.soliditylang.org/en/v0.5.

16/.

[212] solscan.io. Mango Markets Exploiter.

https://solscan.io/account/CQvKSNnYtPTZfQRQ5jkHq8q2swJyRsdQLcFcj3EmKFfX.

[213] solscan.io. Mango Markets Exploiter.

Address CQvKSNnYtPTZfQRQ5jkHq8q2swJyRsdQLcFcj3EmKFfX, 2022.

[214] Tianyu Sun and Wensheng Yu. A formal verification framework for security issues of blockchain

smart contracts. Electronics, 9(2):255, 2020.

[215] John Symons and Jack K Horner. Why there is no general solution to the problem of software

verification. Foundations of Science, 25:541–557, 2020.

[216] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. Equivalences for free: univalent parametricity

for effective transport. Proceedings of the ACM on Programming Languages, 2(ICFP):1–29, 2018.

[217] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A survey of smart contract

formal specification and verification. ACM Computing Surveys (CSUR), 54(7):1–38, 2021.

109

https://doi.org/10.1016/j.erss.2020.101614
https://doi.org/10.1016/j.oneear.2022.06.004
https://doi.org/10.1016/j.oneear.2022.06.004
https://docs.soliditylang.org/en/v0.5.16/
https://docs.soliditylang.org/en/v0.5.16/

[218] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A Survey of Smart Contract

Formal Specification and Verification. ACM Comput. Surv., 54(7):148:1–148:38, July 2021. ISSN

0360-0300. doi: 10.1145/3464421.

[219] Toucan. Toucan Whitepaper. https://docs.toucan.earth/. Accessed March 2023.

[220] Jon Truby, Rafael Dean Brown, Andrew Dahdal, and Imad Ibrahim. Blockchain, climate damage,

and death: Policy interventions to reduce the carbon emissions, mortality, and net-zero implications

of non-fungible tokens and bitcoin. Energy Research & Social Science, 88:102499, 2022. https:

//doi.org/10.1016/j.erss.2022.102499.

[221] Johan Van Benthem and Jan Bergstra. Logic of transition systems. Journal of Logic, Language

and Information, 3:247–283, 1994.

[222] Gijs van Leeuwen, Tarek AlSkaif, Madeleine Gibescu, and Wilfried van Sark. An integrated

blockchain-based energy management platform with bilateral trading for microgrid communities.

Applied Energy, 263:114613, 2020. https://doi.org/10.1016/j.apenergy.2020.114613.

[223] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. Refinement

types for haskell. In Proceedings of the 19th ACM SIGPLAN international conference on Functional

programming, pages 269–282, 2014.

[224] Fabian Vogelsteller and Vitalik Buterin. Erc-20 token standard.

https://github.com/ethereum/ercs/blob/master/ERCS/erc-20.md. Accessed December 2023.

[225] Shermin Voshmgir, Michael Zargham, et al. Foundations of cryptoeconomic systems. Research

Institute for Cryptoeconomics, Vienna, Working Paper Series/Institute for Cryptoeconomics/Inter-

disciplinary Research, 1, 2019.

[226] Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang, and Kui

Ren. Towards A First Step to Understand Flash Loan and Its Applications in DeFi Ecosystem. In

Proceedings of the Ninth International Workshop on Security in Blockchain and Cloud Computing,

pages 23–28, May 2021. doi: 10.1145/3457977.3460301.

[227] Shuai Wang, Wenwen Ding, Juanjuan Li, Yong Yuan, Liwei Ouyang, and Fei-Yue Wang. De-

centralized autonomous organizations: Concept, model, and applications. IEEE Transactions on

Computational Social Systems, 6(5):870–878, 2019.

[228] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and William

Knottenbelt. SoK: Decentralized Finance (DeFi). In Proceedings of the 4th ACM Conference

on Advances in Financial Technologies, AFT ’22, pages 30–46, New York, NY, USA, July 2023.

Association for Computing Machinery. ISBN 978-1-4503-9861-9. doi: 10.1145/3558535.3559780.

[229] Bryan White, Aniket Mahanti, and Kalpdrum Passi. Characterizing the OpenSea NFT Marketplace.

In Companion Proceedings of the Web Conference 2022, WWW ’22, pages 488–496, New York,

110

https://doi.org/10.1016/j.erss.2022.102499
https://doi.org/10.1016/j.erss.2022.102499
https://doi.org/10.1016/j.apenergy.2020.114613

NY, USA, August 2022. Association for Computing Machinery. ISBN 978-1-4503-9130-6. doi:

10.1145/3487553.3524629.

[230] Jeannette M Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–22, 1990.

[231] Junghoon Woo, Ridah Fatima, Charles J. Kibert, Richard E. Newman, Yifeng Tian, and Ravi S.

Srinivasan. Applying blockchain technology for building energy performance measurement, reporting,

and verification (mrv) and the carbon credit market: A review of the literature. Building and

Environment, 205:108199, 2021. https://doi.org/10.1016/j.buildenv.2021.108199.

[232] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods:

Practice and experience. ACM computing surveys (CSUR), 41(4):1–36, 2009.

[233] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas

Anderson. Planning for change in a formal verification of the raft consensus protocol. In Proceedings

of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2016, pages 154–165,

New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341271. doi:

10.1145/2854065.2854081. URL https://doi.org/10.1145/2854065.2854081.

[234] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decentralized exchanges (dex)

with automated market maker (amm) protocols. ACM Computing Surveys, 55(11):1–50, 2023.

[235] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK: Decentralized Exchanges

(DEX) with Automated Market Maker (AMM) Protocols. ACM Comput. Surv., 55(11):238:1–238:50,

February 2023. ISSN 0360-0300. doi: 10.1145/3570639.

[236] Zheng Yang and Hang Lei. Fether: An extensible definitional interpreter for smart-contract

verifications in coq. IEEE Access, 7:37770–37791, 2019.

[237] Zheng Yang and Hang Lei. Lolisa: Formal Syntax and Semantics for a Subset of the Solidity

Programming Language in Mathematical Tool Coq. Mathematical Problems in Engineering, 2020:

e6191537, December 2020. ISSN 1024-123X. doi: 10.1155/2020/6191537.

[238] Zheng Yang, Hang Lei, and Weizhong Qian. A Hybrid Formal Verification System in Coq for

Ensuring the Reliability and Security of Ethereum-Based Service Smart Contracts. IEEE Access, 8:

21411–21436, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.2969437.

[239] Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and Javier Dı́az. Djed: A formally

verified crypto-backed autonomous stablecoin protocol. In 2023 IEEE International Conference on

Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE, 2023.

[240] Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and Javier Dı́az. Djed: A formally

verified crypto-backed autonomous stablecoin protocol. IEEE ICBC 2023, 2023.

[241] Hans J Zassenhaus. The theory of groups. Courier Corporation, 2013.

111

https://doi.org/10.1016/j.buildenv.2021.108199
https://doi.org/10.1145/2854065.2854081

[242] Xiyue Zhang, Yi Li, and Meng Sun. Towards a Formally Verified EVM in Production Environment.

In Coordination Models and Languages: 22nd IFIP WG 6.1 International Conference, COORDINA-

TION 2020, Held as Part of the 15th International Federated Conference on Distributed Computing

Techniques, DisCoTec 2020, Valletta, Malta, June 15–19, 2020, Proceedings 22, pages 341–349.

Springer, 2020.

[243] Yi Zhang, Xiaohong Chen, and Daejun Park. Formal specification of constant product (xy= k)

market maker model and implementation. White paper, 2018.

[244] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian Weng, and Muhammad

Imran. An overview on smart contracts: Challenges, advances and platforms. Future Generation

Computer Systems, 105:475–491, April 2020. ISSN 0167-739X. doi: 10.1016/j.future.2019.12.019.

[245] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang, Kaihua

Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. SoK: Decentralized Finance (DeFi)

Attacks, April 2023.

112

Appendix A

Structured Pools for Tokenized

Carbon Credits

A.1 Introduction

Tokenized carbon credits, which are of growing relevance to voluntary carbon markets [5, 64, 67, 209],

have unique metadata and are typically tokenized as non-fungible tokens (NFTs). However, this can lead

to low liquidity and high price volatility, so there is a push within the industry to make carbon credits as

fungible as possible [69, 179].

As discussed at length in Appendix B, the current, standard solution is to pool carbon credits which

have similar features, such as a specific vintage or crediting methodology, and to value each pooled token

equally within the pool. From a valuation perspective, this discards the differences in constituent credits.

Ideally, we would increase liquidity without ignoring these differences.

To that end we propose a novel pooling mechanism, called a structured pool, which pools carbon credits

without ignoring their differences by valuing pooled tokens relative to each other and facilitating trades

between them.

A.2 Related Work

Tokenized carbon credits can be pooled together in limited ways. For example, Toucan, perhaps the most

prominent provider of tokenized carbon credits [209], tokenizes carbon credits from the Verra registry as

NFTs on Polygon [219]. Each NFT can then be fractionalized as an ERC20 token using a TCO2 token

contract. Distinct TCO2 contracts are not mutually fungible because they carry the metadata of the

113

carbon credit they fractionalize.

To achieve mutual fungibility, Toucan launched the Base Carbon Tonne (BCT) and the Nature Carbon

Tonne (NCT) pools. Any TCO2 token which satisfies the acceptance criteria of one of these pools can be

pooled, one-for-one, in exchange for BCT or NCT tokens, respectively.

While these pools do increase token fungibility, they do so at the cost of valuing individual metadata, and

we can go further by removing the required one-for-one exchange rate. Our strategy is to value pooled

tokens relative to each other by enabling trading of the pooled non- or semi-fungible tokens.

Non- and semi-fungible tokens are typically traded via orderbook-style DEXes which implement various

types of auctions, because low liquidity makes it difficult to use market-makers [140]. Two examples are

OpenSea, the NFT marketplace with the most extensive user base and sales volume [229], where one can

list an NFT or sell it via a timed auction; and OBJKT, a Tezos-based NFT marketplace, where one can

sell an NFT via English and Dutch auctions [4].

Even so, there is novel research in market-making for non- or semi-fungible tokens. For example, Kim

et al. propose a model for market-making in NFTs which uses option contracts to achieve fair prices

[123]. Eulerbeats, an art and music platform which issues algorithmically-generated NFTs, implements a

form of AMM by using mathematical properties of the NFTs to determine mint and burn prices [235].

Both of these examples are able to market-make because they can derive stable prices for the non- or

semi-fungible tokens being traded.

We demonstrate a novel mechanism in market-making for non- or semi-fungible tokens which prices trades

by leveraging the fact that tokenized carbon credits belong to a single family of tokens, so their granular

metadata can help us value carbon credits relative to each other. Unlike previous work, we draw on the

mechanics of commonly-used AMMs to price trades.

We proceed as follows: In Section A.3 we specify the structured pool contract. In Section A.4 we

draw on previous work on AMMs to derive desirable properties of market-making contracts. We prove

mathematically that a contract satisfying the specification of Section A.3 also satisfies these properties.

In Section A.5 we discuss limitations to our approach, and then conclude in Section A.6.

A.3 Structured Pools

A structured pool contract has at least three entrypoints: DEPOSIT, WITHDRAW, and TRADE. The first two,

DEPOSIT and WITHDRAW, are for pooling and unpooling constituent tokens, respectively, in exchange for

a pool token. The exchange rate from a particular tokenized carbon credit to the pool token is called

the pooling exchange rate, and is set individually for each carbon credit which can be pooled. These are

also the entrypoints for, respectively, depositing and withdrawing liquidity used for trades, which are

executed via the TRADE entrypoint. Each of these entrypoints is governed by equations which price trades

114

and update the pooling exchange rates, which will see shortly.

The contract’s storage must keep track of the family of tokens which can be pooled, each of which is

called a constituent token, along with the pooling exchange rate of each token in the family. Each pooling

exchange rate is assumed to be strictly positive when the contract is deployed. It must also keep track of

the contract’s balance of each constituent token, the address of the pool token contract, and the total

number of outstanding pool tokens.

A brief comment on notation. We refer to our family of constituent tokens as T , where a token tx in the

family is described by its token data, which is a contract address and token ID pair. We will typically

discuss trades from, e.g. tx to ty, where ∆x refers to the quantity traded in, ∆y refers to the quantity

traded out, and x and y refer, respectively, to the quantity of each token held by the contract. We also

write rx as the pooling exchange rate in storage for token tx.

A.3.1 Deposits

The DEPOSIT entrypoint accepts the token data of some tx from the token family and a quantity q of

tokens in tx to be deposited. The pool contract checks that tx is in the token family. It then transfers q

tokens of tx to itself, wich is done by calling the transfer entrypoint of the token tx, which is a standard

entrypoint of token contracts. It simultaneously mints q ∗ rx pool tokens and transfers them to the

sender’s wallet. This transaction is atomic, meaning that if any of the TRANSFER or MINT operations fail,

the entire transaction fails.

A.3.2 Withdrawals

The WITHDRAW entrypoint accepts token data of some tx from the token family and a quantity q of pool

tokens the user wishes to burn in exchange for tokens in tx. The pool contract checks that tx is in the

token family, and checks that it has sufficient tokens in tx to execute the withdrawal transaction. The

pool contract then transfers q pool tokens from the sender to itself and burns them by calling the BURN

entrypoint, a standard entrypoint of token contracts. It simultaneously transfers q
rx

tokens in tx from

itself to the sender’s wallet. As before, the transaction is atomic, so if any of the TRANSFER or BURN

operations fail, the entire transaction fails.

A.3.3 Trades

The TRADE entrypoint takes the token data of some token tx in T to be traded in, the token data of some

token ty in T to be traded out, and the quantity ∆x to be traded. It checks that both tx and ty are in

the token family, that k > 0, and that ∆x > 0. It calculates ∆y using formulae we will give below, and

checks that it has a sufficient balance y in ty to execute the trade action. Then in an atomic transaction,

115

the contract updates the exchange rate rx in response to the trade, transfers ∆x of tokens tx from the

sender’s wallet to itself, and transfers ∆y of tokens ty from itself to the sender’s wallet. The specification

is summarized in Figure A.1.

1 (* two auxiliary functions *)
2 fn CALCULATE_TRADE r_x r_y delta_x k =
3 let l = sqrt(k / (r_x r_y)) ;
4 l * r_x - k / (l * r_y + delta_x) ;
5

6 fn UPDATE_RATE x delta_x delta_y r_x r_y =
7 (r_x x + r_y * delta_y)/(x + delta_x);
8

9 (* pseudocode of the TRADE entrypoint *)
10 fn TRADE t_x t_y delta_x =
11 let delta_y = CALCULATE_TRADE
12 r_x r_y delta_x k ;
13 if (is_in_family t_x) &&
14 (is_in_family t_y) &&
15 (delta_x > 0) &&
16 (k > 0) &&
17 (self_balance t_y >= delta_y)
18 then
19 <atomic>
20 r_x <- UPDATE_RATE
21 x delta_x delta_y r_x r_y;
22 transfer (delta_x)
23 of (t_x)
24 from (sender)
25 to (self) ;
26 transfer (delta_y)
27 of (t_y)
28 from (self)
29 to (sender) ;
30 </atomic>
31 else
32 fail ;

Figure A.1: Pseudocode of the TRADE entrypoint function.

The contract prices trades by simulating trading along the curve xy = k (for some generic x and y),

where k is the total number of outstanding pool tokens. A trade of ∆x yields ∆y tokens such that the

following equation holds:

(x+∆x)(y −∆y) = k, (A.1)

giving

∆y = y − k

x+∆x
. (A.2)

This is how trades are priced in the wild for liquidity pools of fungible tokens [14]. We call ps =
∆y

∆x
the

swap price.

An important consequence to (A.1) is that the smaller ∆x is compared to k, the closer the exchange

happens at a rate of pq = y
x . This is because the derivative of xy = k, or f(x) = k

x , is

f ′(x) =
−k

x2
=

−y

x
,

and the smaller ∆x is relative to k, the more accurately the tangent line at some (x0, y0) approximates

116

5 10 15 20 25 30

10

20

30

k = 50

∆x

∆s
y

∆x

∆q
y

Figure A.2: A trade of ∆x = 3 for ∆q
y and ∆s

y, respectively, at k = 50. ∆q
y = pq∆x is the trade priced at

the quoted price pq and ∆s
y = ps∆x is the trade priced at the swap price ps.

the convex curve xy = k. We call pq = y
x the quoted price.

The difference pq − ps is called the price slippage [235, §3.2.4]. It is important to note that ps is always

less than pq because pq is calculated by moving ∆x along the tangent line from a starting point (x0, y0)

representing the current state of the contract’s funds available for trading, and ps is calculated by moving

∆x along xy = k. Since xy = k is convex, moving ∆x along the tangent line always results in a larger ∆y

than moving along xy = k. See Figure A.2 for a graphical illustration, where ∆q
y is the output of a trade

priced at pq and ∆s
y is the output of a trade priced at ps.

In particular, this means that

∆s
y < pq∆x (A.3)

always holds, since ∆s
y = ps∆x. This fact is crucial to the mechanics of how structured pools update

relative prices in response to trading activity.

We use the pooling exchange rates to inform quoted prices between tokens, and then simulate trades

along the curve xy = k (for some generic x and y). If the token tx pools at a rate of rx, meaning rx is the

value of tx in terms of pool tokens, and the token ty pools at a rate of ry, then tx can be valued relative

to ty at a rate of

rx,y :=
rx
ry

. (A.4)

It is perhaps counterintuitive that rx is in the numerator and not the denominator of rx,y, considering

that pq = y
x in the generic case, but this is due to the fact that rx indicates pool tokens per tx, and we

want rx,y to indicate ty valued in terms of tx.

To price a trade we begin by finding ℓ such that

(ℓry)(ℓrx) = k,

117

where k is the total number of outstanding pool tokens in the contract’s storage. The trade then yields

∆s
y tokens such that

(ℓry +∆x)(ℓrx −∆s
y) = k. (A.5)

This formula yields the quoted price of this trade as

pq =
ℓrx
ℓry

=
rx
ry

= rx,y, (A.6)

as desired. The swap price, then, is

ps =
∆s

y

∆x
(A.7)

where

∆s
y = ℓrx − k

ℓry +∆x
. (A.8)

For the rest of this document, we will write ∆s
y simply as ∆y unless explicitly stated otherwise.

After executing a trade, if we do not adjust pooling exchange rates, the pool token is now overcollateralized.

We can see this because by (A.3),

ry∆y < rx∆x,

so a trade deposits slightly more in terms of pool tokens (rx∆x) than it removes (ry∆y). Thus the sum

of the value of all the constituent tokens at their current valuation is now greater than the total number

of outstanding pool tokens.

To avoid this, we adjust the values of the constituent tokens so that their sum at the new valuation is

equal to the total number of outstanding pool tokens. In a trade tx to ty, because it is possible to deplete

ty from the pool, we cannot reliably regain pooled consistency by adjusting the value of the token being

traded for in the pool. We know, however, that we have a supply of tx because that was the deposited

token. Thus to regain pooled consistency, we have to slightly devalue tx in relation to the rest of the pool

tokens. To do so, we divide the quantity of pool tokens by its collateral in tx to get an updated exchange

rate r′x as follows:

r′x :=
rxx+ ry∆y

x+∆x
. (A.9)

Equation (A.9) updates the pooling exchange rate of tx so that the pool token is neither under- nor

over-collateralized.

Consider as an example a pool with three constituent tokens tx, ty, and tz, and pooling exchange rates

rx = 2, ry = 1, and rz = 1. That is, tx is valued at two pool tokens for one token, and each of ty and tz

are valued at one pool token for one token. Suppose we have 10 tx, 15 ty, and 15 tz pooled, thus having

20 + 15 + 15 = 50 outstanding pool tokens.

Now suppose that we trade 1 tx for slightly less than 2 ty (the quoted price would be exactly 2). Using our

formulae, ℓ =
√

50
2 = 5 and ∆y ≈ 1.67 (slippage is high because of the small amount of liquidity). Post

118

trade, we have in our pool 11 tx, 13.33 ty, and 15 tz, giving us in the pool the equivalent in constituent

tokens as

2 ∗ 11 + 1 ∗ 13.33 + 1 ∗ 15 = 50.33

pool tokens with our unadjusted pooling exchange rates. To rectify this, bringing the pool back down to

the value of 50 pool tokens, we slightly devalue tx relative to the other tokens in the pool. We use the

formula (A.9)

r′x =
#pool tokens

#tokens of tx
=

rxx+ ry∆y

x+∆x
≈ 1.97,

which adjusts rx so that the 11 tx are now worth about 21.67 pool tokens instead of 22. This gives us our

desired

1.97 ∗ 11 + 1 ∗ 13.33 + 1 ∗ 15 = 50.

After this update, ty is valued more in relation to tx, which makes sense because tx was sold to buy ty.

One ty used to be worth half of tx, and now it is valued at

ry
r′x

≈ 0.508.

We need to make sure that the relative price of ty didn’t rise so much that if we trade back for tx, we

have more in tx than we started with. If this were the case, we would have an opportunity for arbitrage

within the structured pool, something we wish to avoid. The quoted price for trading our roughly 1.67 ty

back to tx would give us about 0.508 ∗ 1.67 ≈ 0.848, which is less than 1, as desired.

We end this section with a note that in these calculations, we implicitly assumed exchange rates rx to be

rational numbers by which we can multiply and divide freely so long as rx > 0. Of course, implementations

will include rounding error, and so we add to the specification that the UPDATE RATE function return a

positive number if the numerator and denominator of the quotient are positive. We also specify that

the CALCULATE TRADE function return a positive number if k, rx, ry, and ∆x are positive, and that

∆y < rx
ry
∆x always be true for successful trades.

A.4 Properties of Structured Pools

The structured pool contract is designed to imitate AMMs in how it prices trades and updates the pooling

exchange rates. While AMMs such as Uniswap have been shown to exhibit desirable economic behaviors

[14], it is not obvious that the structured pool contract will do the same. To that end, we draw on

work by Angeris et al. [13, 14], Bartoletti et al. [31, 32], and Xu et al. [235] on AMMs and DeFi, from

which we derive six properties indicative of desirable market behavior from game-theoretic and economic

perspectives.

Property 1 (Demand Sensitivity). Let tx and ty be tokens in our family with nonzero pooled liquidity

119

and exchange rates rx, ry > 0. In a trade tx to ty, as rx is updated to r′x, it decereases relative to rz for

all z ̸= x, and ry strictly increases relative to rx.

Proof. First we prove that r′x < rx. We must prove:

r′x =
rxx+ ry∆y

x+∆x
<

rxx+ rx∆x

x+∆x
=

rx(x+∆x)

x+∆x
= rx,

which holds if ry∆y < rx∆x. By (A.3) and (A.6):

∆y <
rx
ry

∆x = pq∆x,

so ry∆y < rx∆x as desired. By the specification, rz remains constant for all tz ̸= tx under TRADE, so as

rx is updated to r′x it decreases relative to rz. That ry strictly increases relative to rx is due to the fact

that r′x < rx and ry stays constant.

Property 2 (Nonpathological Prices). For a token tx in T , if there is a contract state such that rx > 0,

then rx > 0 holds for all future states of the contract.

Proof. We only need to show that rx > 0 implies r′x > 0, since TRADE is the only entrypoint that updates

exchange rates. Consider a contract state such that rx > 0, and an incoming trade from tx to some ty of

quantity ∆x > 0. Because ∆y is calcluated such that

(ℓry +∆x)(ℓrx −∆y) = k,

and since rx, ry, and ∆x are all positive, we know that ∆y is positive so long as k is not zero. If k is

zero, the transaction fails as we specified for the TRADE entrypoint, so we know that ∆y > 0. Since

ry∆y < rx∆x and x cannot be negative we have that

0 < ry∆y < rx∆x < rx(x+∆x),

rendering the numerator of r′x,

rxx+ ry∆y,

always positive. Since ∆x is positive and x cannot be negative, the denominator of r′x,

x+∆x,

is also positive, which gives our result. Our result holds, then, so long as the UPDATE RATE function return

a positive number if the numerator and denominator of the quotient are positive, which we specified for

the TRADE entrypoint.

Property 3 (Swap Rate Consistency). Let tx be a token in our family with nonzero pooled liquidity and

120

rx > 0. Then for any ∆x > 0 there is no sequence of trades, beginning and ending with tx, such that

∆′
x > ∆x, where ∆′

x is the output quantity of the sequence of trades.

Proof. Consider tokens tx, ty, and tz with nonzero liquidity and with rx, ry, rz > 0. First, we claim that

the following inequality holds for all x ≥ 0 and all trades from tx to ty:

ry∆y ≤ r′x∆x. (A.10)

Since

r′x =
rxx+ ry∆y

x+∆x
, (A.9)

(A.10) simplifies to

ry∆y(x+∆x) ≤ ∆x(rxx+ ry∆y),

which in turn simplifies to

ry∆yx ≤ rx∆xx.

Since we know that ry∆y ≤ rx∆x from (A.3), we can see that our inequality holds for all x ≥ 0, as

desired.

Now we consider sequences of trades beginning and ending with tx. For a trade tx to tx, we have our

result because

∆′
x <

rx
rx

∆x = ∆x

by (A.3). Now consider a trading loop from tx to ty, and back to tx, for ty ̸= tx. We have our result if we

can show
ry
r′x

∆y ≤ ∆x

is satisfied, because
ry
r′x
∆y is an upper bound on the quantity that ∆y can be traded for as ps < pq. This,

of course, is given by (A.10) and the fact that r′x > 0 from Property 2.

Finally, consider a trade from tx to ty, to tz, and back to tx. Similar to before we need to show that

rz
r′x

∆z ≤ ∆x

is satisfied. But we have from (A.10) that

rz∆z ≤ r′y∆y ≤ ry∆y ≤ r′x∆x,

as desired. This proof can be easily seen to apply to trading loops of arbitrary length, which proves our

result.

Property 4 (Zero-Impact Liquidity Change). The quoted price of trades is unaffected by calling DEPOSIT

and WITHDRAW.

121

Proof. We have this result because the quoted price depends only on the pooling exchange rates, as we

saw in (A.4), and as per the specification, only the TRADE entrypoint alters pooling exchange rates.

Property 5 (Arbitrage sensitivity). Let tx be a token in our family with nonzero pooled liquidity and

rx > 0. If an external, demand-sensitive market prices tx differently from the structured pool, then

assuming sufficient liquidity, with a sufficiently large transaction either the price of tx in the structured

pool converges with the external market, or the trade depletes the pool of tx.

Proof. Suppose the structured pool prices a constituent token tx higher than an external market. Then

an arbitrageur can buy tx elsewhere and sell them into the structured pool. Doing so devalues tx relative

to the other tokens, as we have shown. Recall that 0 < r′x < rx, so to prove our result we just need to

show that 0 is the greatest lower bound of r′x. Note that by definition, ∆y = ∆s
y, so substituting (A.8)

∆s
y = ℓrx − k

ℓry +∆x
,

r′x =
rxx+ ry∆y

x+∆x
=

rxx+ ℓrxry − ryk
ℓry+∆x

x+∆x
.

Then

r′x <
rxx+ ℓrxry
x+∆x

and since x, rx, ry, and ℓ are constants for a trade, for any r, 0 < r < rx, by choosing a sufficiently large

∆x we can make r′x < r. Thus assuming sufficient external liquidity, we have our result.

Now suppose the structured pool prices a constituent token tx lower than an external market. Then an

arbitrageur can buy tx from the structured pool and sell them elsewhere. Doing so does not change rx,

as per the specification. However, the external market is demand sensitive, so the price of tx will decrease

on that market. Then we know that after a trade of ∆x = x, either the external market now prices tx

lower than the structured pools contract, meaning there was some

∆′
x < ∆x

which gives our result, or the trade depletes the pool of tx, giving our result.

Property 6 (Pooled Consistency). The following equation always holds:

∑
tx

rxx = k (A.11)

Proof. As a base case, by the specification, at the time of contract deployment k = 0 and we have no

pooled liquidity, so (A.11) holds trivially because x = 0 for all tx. For our inductive step, consider a

contract state for which (A.11) holds. If we call DEPOSIT, (A.11) holds by definition because for a deposit

of dx of tx, we mint rxdx pool tokens. The same is true if we call WITHDRAW. Finally, if we call TRADE

122

from tokens tx to ty, then there is an excess number of tokens in tx, violating (A.11). This excess is

quantified in (A.9) and remedied by adjusting rx to r′x as we saw before.

A.5 Limitations

While we have proved that some properties of AMMs, shown to be indicative of desirable market behavior

by the literature, hold for structured pools, our work has limitations.

Firstly, the properties in the literature which we drew on were derived for AMMs using custom, formal

models of the blockchain to justify the results, but we adapted them to our use case somewhat informally

and without using a formal model of the blockchain. It is not obvious that they imply the same notions

of desirable market behavior for structured pools in the same way that they apply to AMMs.

In particular, Property 5, arbitrage sensitivity, is weaker than the similar properties in the literature

because the pool can deplete in some constituent tokens (though not entirely through trading). This

may be problematic if the value of one constituent token plummets for whatever reason, as this could

cause the pool to deplete in every token but the now-devalued one. Whether this is actually an issue may

depend on the specific use case and family of tokens.

Finally, while these proofs are mathematical and rely on the specification, there is always a possibility of

error due to incorrect assumptions or because we do not base this in an explicit and formal model of a

blockchain. These results would be more reliable if this contract specification and proofs were embedded

in a formal system.

A.6 Conclusion

Our goal was to enable greater fungibility for tokenized carbon credits, improving on current methods

which pool tokens at the expense of individual token metadata.

We presented structured pools, which are able to pool tokens without imposing a one-for-one valuation.

Structured pools value constituent tokens relative to each other in a dynamic way by facilitating trades

between constituent tokens and updating relative prices in response to trading activity.

To show that structured pools satisfy desirable properties of AMMs, we drew on previous research on

AMMs and DeFi, including [13, 14, 31, 32, 235], and we derived six key properties and proved that a

contract satisfying our specification also satisfies these key properties. As we pointed out in Section A.5,

for any actual implementation, these properties would ideally be formalized and proved within a formal

system.

We demonstrated that it is possible to pool tokens in a wide-ranging token family without imposing a

123

one-for-one valuation on the constituent, pooled tokens. We hope that this will be useful to pool and

trade tokenized carbon credits with deeper on-chain liquidity. While this targets tokenized caron credits

on the blockchain, we conjecture that this pooling mechanism could be useful for other cases, including

tokenized commodities more broadly.

124

Appendix B

Tokenized Carbon Credits

B.1 Introduction

Blockchains are well-suited for tokenizing, trading, and retiring voluntary carbon credits, as recognized by

the UN [6], the World Bank [94], the World Economic Forum [102], and others [68, 70, 127, 180, 204, 210].

They offer several advantages to legacy systems, including transparency and censorship resistance, which

lend themselves to robust accounting practices and which can help prevent double counting carbon

credits [70, 94]. However, tokenized carbon credits are defined by a varied set of standards, both of token

contracts as well as the kind of carbon credits that are acceptable [178]. This hampers interoperability and

trading with high liquidity [64, 70, 178], which can lead to fragmented, inefficient, and volatile markets

[64, 94, 178].

To promote interoperability between tokenized carbon credits, and to support current efforts in creating

a unified token standard [57, 161], we survey the current state of tokenized carbon credits. Our goal

is to clarify the technical hurdles to interoperability, so we evaluate tokenized carbon credits from a

technical, rather than economic or climate, perspective. We do not make value judgments on the various

methodologies which quantify carbon capture, and which back tokenized carbon credits, nor on the

reputation or reliability of any particular producer of tokenized carbon credits.

We note that central to the climate debate as it relates to blockchains is the energy expenditure of large

proof-of-work chains such as Bitcoin [150, 220]. This included Ethereum up until the so-called Merge in

September 2022 [166]. Since the Merge, all the projects discussed here operate on proof-of-stake chains,

which consume negligible amounts of electricity to secure the blockchain [35]. Thus here we will not treat

the energy expenditure of blockchains.

125

B.1.1 Outline

We proceed as follows. In Section B.2 we survey related work. In Section B.3, we survey tokenized

carbon credits and consider how they are tokenized, what substantiates their value, and their individual

tokenomics. In Section B.4, we discuss how tokenized carbon credits are most frequently traded on

blockchains. In Section B.5, we consider various on-chain applications built on tokenized carbon credits.

In Section B.6, we discuss how climate data is made available on-chain, both for tokenization as well

as related applications. In Section B.7, we mention related organizations and collectives which aim to

promote the usage of blockchains for carbon trading, some of whom are attempting to make standards

for tokenized carbon credits. In Section B.8 we conclude.

B.2 Related Work

Tokenized carbon credits are central to Regenerative Finance (ReFi), a subset of Decentralized Finance

(DeFi), named after a broader movement in regenerative capitalism [85, 91], which is primarily concerned

with climate change mitigation through digital assets of various kinds [64, 76]. ReFi consists of a wide

range of applications that can be studied from many disciplines, including business [86], law [64, 127]

economics [131, 139], and computer science. Tokenized carbon credits have been studied in relation to the

energy industry [12], the transition into sustainable energy [139], and how to maximize the efficiency of

current grids by allowing for peer-to-peer energy trading [222]. There is also research regarding solutions

for measurement, reporting, and verification (MRV) [231], and sustainable supply chains [182, 199].

Further work on tokenized carbon credits includes climate market design [23, 94, 204], surveys of ReFi

applications and of related organizations and initiatives [70, 86], studies of the impact and efficacy of

blockchain in sustainability efforts [184, 205, 210], possible blockchain-based green fintech applications

[68], and studies from the perspective of legacy voluntary carbon markets [178]. There has also been work

in the grey literature on bridging voluntary carbon markets onto blockchains [34], but this approaches

the issue from a less technical and more market-driven approach than what we give here.

A salient theme from previous work is that governments, agencies, and researchers share an explicit goal

of interoperable tokenized carbon credits that can be traded with high liquidity. This is also an explicit,

central goal for producers of tokenized carbon credits. Part of the issue is that tokenized carbon credits

are expected to behave like commodities [94, 204], and therefore be fully fungible on-chain as an asset

class. However, a cursory examination of the industry reveals a heterogeneity which makes it difficult to

do so in practice; we will see this in detail in Section B.3.

Our contribution is an exposition of the technical details of tokenized carbon credits with the aim of

supporting interoperability, mutual fungibility, and unified token standards. This work could be useful in

unifying a fractured marketplace and achieving the goals of the industry. More broadly, our goal is to

126

support efforts to build open, decentralized, and composable financial infrastructure for tokenized carbon

credits which leverages advantages of decentralized finance (DeFi) [189, 200].

B.3 Tokenized Carbon Credits

Tokenized carbon credits vary in at least two ways: in what justifies their value and in the implementation

details of the token contract. The first relates to interoperability from a qualitative perspective. Tokens that

represent equivalent or comparable things are easier to interoperate than tokens which represent distinct

or incomparable things. The second relates to interoperability from a more technical and engineering

perspective. The fungibility status, metadata, entrypoints, and level of adherence to established standards

of various token contracts may impact the ease or difficulty of developing applications that build on

and facilitate interoperability among multiple tokenized carbon credits. Because we study tokenized

carbon credits through the lens of interoperability, we examine tokenized carbon credits within these

broad categories: first, in what justifies their value as a legitimate carbon credit, and second, in the

implementation details of their token contracts. We elaborate on each of these categories.

First, tokenized carbon credits must be substantiated in some way as atmospheric carbon dioxide rigorously

captured and stored, or something similar to it (e.g. avoided emissions). This requires a methodology

for data collection and processing that accurately quantifies the amount of carbon stored. As with any

discipline, such methodologies can vary in nature, rigor, and reliability. Some tokenized carbon credits

draw on established methodologies such as those of Verra or Gold Standard [178], as they are backed by

carbon credits on legacy ledgers. Others are minted natively on a blockchain using new methodologies,

based on machine learning and satellite data. In either case we encounter the problem of tokenization,

which is how one accurately represents some off-chain asset or data on a blockchain in such a way that

transactions on the blockchain correctly govern any corresponding real-world asset or event.

More subtly, every entity that tokenizes carbon credits makes a choice on criteria for acceptable carbon

credits. For those tokenized from a legacy ledger, the tokenizing party must set criteria for which carbon

credits from the legacy ledger are allowed to be tokenized. The most common guards relate to vintage

(e.g. that credits must be less than ten years old), or restrict to a certain class of carbon credit (e.g.

restricting to nature-based credits or requiring that credits be from carbon sequestration rather than

prevented deforestation). The reason for these choices can vary greatly, from a value judgment on the

quality of some credits, to the specific ethos and goals of a particular team. For tokenized carbon credits

which employ their own methodology to verify captured carbon and mint credits, the methodology itself

makes a judgment on what constitutes rigorous carbon capture, and thus a carbon credit, and what does

not. We will look at these details as they relate to what substantiates a tokenized carbon credit, though

we reiterate that we are not in a position to make value judgments on one methodology over another.

Secondly, tokenized carbon credits differ in their implementation details, in particular in their token

127

Company Token Fungible Methodology Fungibility Layer Chain(s)

Toucan TCO2 N Verra Base Carbon Tonne (BCT) Polygon/Celo
Nature Carbon Tonne (NCT)

Flowcarbon GCO2 N Gold Standard Goddess Nature Token (GNT) Celo

MOSS MCO2 Y REDD+ — Ethereum

Carbovalent SCT N Verra/Gold Standard Blue Carbon Credit (BCC) Solana
Forest Carbon Credit (FCC)

Nori NRT N US Croplands (Custom) NORI (Utility Token) Ethereum

Likvidity LCO2 Y REDD+ LIKK (Utility Token) Ethereum

Table B.1: Tokenized carbon credits vary in fungibility status, methodology, associated fungibility layers
and utility tokens, and the hosting blockchain.

contracts and their characteristics. To our knowledge, tokenized carbon credits all conform to token

standards typical for the blockchain on which they are deployed. For Ethereum, these are the ERC20

and ERC721 standards, and for Binance, these are the BEP20 and BEP721 standards for, respectively,

fungible and non-fungible tokens. Standards for fungible and non-fungible tokens tend to be highly

compatible, though not exactly the same. For example, tokens on separate blockchains will require

bridging, and are secured by distinct consensus algorithms [37]. Even so, these technical differences are

not insurmountable.

Tokenized carbon credits differ technically in other ways, including the degree to which they are fungible.

Some are natively fungible, while others are tokenized as NFTs, containing granular data on the carbon

credit or carbon project backing it in their metadata, which can then be fractionalized or traded for a

fungible token. Tokens can also differ in how much carbon one token represents (e.g. 1 tonne per token)

or whether they represent captured carbon or avoided emissions. Most importantly, tokens differ in the

tokenomics, or in the various incentive mechanisms that underpin the token, its trade, and distribution.

With this broad framework in mind, we consider several tokenized carbon credits which are hosted by

various blockchains, highlighting their features as it relates to these two categories of variability. For each

of these tokens, we follow their technical structure starting with the ledger or methodologies that back the

tokens, how they are bridged or minted onto the blockchain, and then moving to the token type and how

they address issues of fungibility and liquidity. We note that these projects are at varied technological

readiness levels (TRL) [210]. Of the carbon credits we survey, at the time of writing Toucan is fully

competitive, Nori is in deployment, and some aspects of Flowcarbon are still at the proof of concept stage.

Because our goal is to understand differences in design and implementation, the details of these projects

are relevant to our discussion irrespective of their TRL.

B.3.1 Toucan

Toucan tokenizes Verra credits onto Polygon via their Carbon Bridge [175]. Anyone who owns a Verra

credit can use the Carbon Bridge, subject to two criteria: the backing methodology of the Verra credit

128

must not be on their blocklist, and the credit’s vintage (the difference between the date of verification

and the date of issuance) must not exceed ten years. At the time of writing, the blocklist only has one

methodology, AM0001, which relates to refrigerant manufacturing, and which Verra stopped producing

in 2014 [143]. The bridging process is elaborate, one-way, and non-custodial. To bridge, users create a

BatchNFT token contract into which the credits can be bridged. They then retire the credits on Verra

with specific information about their NFT contract, and then update their contract with the Verra serial

number. Users then await approval from Toucan, where Toucan checks that the token contract and

retirement on Verra align. If approved, Toucan mints the carbon credits into the NFT contract.

Once bridged, the NFT can be fractionalized using a token contract from Toucan’s TCO2 class of ERC20

(fungible) token contracts. Each TCO2 token contract faithfully preserves the metadata of the NFT it

fractionalizes, so distinct TCO2 contracts are not mutually fungible. However, the Toucan team has the

explicit goal of enabling on-chain trading with high liquidity (as we have mentioned), so they have a

pooling mechanism which acts as a fungibility layer on top of the TCO2 contracts. Each pool allows users

to deposit TCO2 tokens in exchange for a fungible pool token which is backed by other TCO2 tokens

that meet the pool’s acceptance criteria. At the time of writing there are two pools, BCT (Base Carbon

Tonne) and NCT (Nature Carbon Tonne), each of which has a list of approved methodologies of Verra

credits which are allowed in the pool. BCT and NCT tokens can also be bridged from Polygon onto Celo.

B.3.2 Flowcarbon

Flowcarbon tokenizes carbon credits from recognized, non-profit registries onto Celo [160]. They handle

the entire tokenization process themselves instead of a public portal or API. Someone wishing to tokenize

a carbon credit submits a request, after which the credits are transferred to and held custodially with

a bankruptcy remote special purpose vehicle (SPV). Flowcarbon then mints a token for the user. The

credits remain on the registry unretired, which means that, in contrast to Toucan, tokenization is a

two-way bridge: tokenized credits can be redeemed for their underlying credits.

Tokens are minted using Flowcarbon’s GCO2 class of ERC20 tokens, including in the metadata the

relevant details to the underlying credits that were tokenized. These are similar to Toucan’s TCO2 family

of tokens, except that GCO2 tokens do not fractionalize an NFT. Flowcarbon has a fungibility layer

similar to Toucan’s, where their pooling token is a bundle token, each bundle has its own acceptance

criteria, and bundle tokens are backed one-for-one by GCO2 tokens. At the time of writing, there are no

active bundles. The Goddess Nature Token (GNT) is planned to be the first, whose acceptance criteria

are that a carbon credit have a nature-based methodology and a five-year vintage period.

129

B.3.3 MOSS

MOSS tokenizes legacy-ledger carbon credits into its fungible MCO2 token on Ethereum [165]. The

MCO2 token is backed one-for-one by carbon credits which are chosen at the discretion of the MOSS

team from globally recognized registries. The tokenization process, then, is very simple and done by

the MOSS team, where they issue tokens for credits that they have in custody. As the user does not

participate in the tokenization process, any criteria or guards on which credits are acceptable for MCO2

are made and enforced by the MOSS team. MCO2 tokens represent ownership of an unretired carbon

credit, held custodially by MOSS. The MCO2 token is also a fungible ERC20 token, where one MCO2

token represents a carbon credit for one tonne of prevented CO2 emissions. Since it is backed by a variety

of credits, the MCO2 token is more similar to Toucan’s BCT and NCT tokens (resp. Flowcarbon’s GNT

token), which are backed by a pool of tokens, than to the more granular TCO2 tokens (resp. the GCO2

tokens) which represent a specific tokenized carbon credit.

B.3.4 Carbovalent

Carbovalent, built on Solana, uses the Morpheus Carbon Bridge, a public bridge with a similar tokenization

process to Toucan’s, to allow users to tokenize legacy-ledger credits from Verra and Gold Standard [151].

The only guard is that all bridged carbon credits must have been issued within ten years of their claimed

vintage end date. One creates an empty NFT contract on Solana, retires their credits on Verra or Gold

Standard, and then updates their NFT with the serial number generated by the offset. Carbovalent then

verifies and approves the bridging, activating the NFT.

Once bridged, NFTs can be fractionalized into Solana Carbon Tonne (SCT) tokens, where one SCT token

corresponds to one tonne of sequestered or prevented emissions. SCT tokens can either be retired to

offset emissions or deposited into the Carbon Vault in return for so-called index tokens Blue Carbon

Credit (BCC) or Forest Carbon Credit (FCC). These index tokens function much like aforementioned

pool tokens, except BCC targets coastal wetlands and FCC targets forests. One can then trade BCC and

FCC on Carbovalent DEX, a decentralized exchange for carbon credits, or trade carbon credits on an

orderbook DEX.

B.3.5 Nori

Nori substantiates their own carbon credits, issuing carbon credits to projects which can prove that they

have captured carbon and have agreed contractually to store it for at least ten years [170]. An independent

third party verifies the project, and the credits issued by Nori are called Nori Carbon Regenerative Tonnes

(NRTs). At the time of writing, the only methodology successfully used to substantiate carbon credits

has been a version of a custom methodology called US Croplands [177].

130

Each NRT represents a verified claim that one tonne of carbon dioxide has been removed from the

atmosphere, along with a contractual commitment that the removed carbon be sequestered for at least

ten years. NRTs are retired immediately on the point of sale, so they cannot be traded on a secondary

market. Even so, Nori has a fungible token, the NORI token, which acts as a fungibility layer over the

NRTs. Each NORI token is redeemable one-for-one for an NRT, where the act of redemption retires the

credit immediatly. In contrast to the NRTs, the NORI token can be traded on a secondary market.

The NORI token differs from previously mentioned fungibiliy-layer tokens. It is not backed by pooled

credits, as NORI tokens are not minted in exchange for pooled NRTs. Instead, the NORI token is

an independent cryptocurrency with complex tokenomics, including a token launch and distribution, a

treasury, a supply cap, and an insurance mechanism. Nori holds unretired NRTs, and the tokenomics of

the NORI token guarantee it to be redeemable one-for-one to retire carbon credits. The NORI token is a

cryptocurrency, partially deriving its value from the value of NRT tokens, as well as a utility token, as

it can be used to retire carbon credits. In the event of a breach of contract, where sequestered carbon

backing an NRT is released before ten years, NORI tokens are automatically taken from the insurance

pool to purchase and retire new credits.

B.3.6 Likvidity

Likvidity tokenizes carbon credits onto Ethereum, using its fungible LCO2 token [164]. Each LCO2 token

represents one tonne of carbon dioxide sequestered from the atmosphere, but the token itself is backed by

a portfolio of twenty different carbon projects in order to diversify risk associated with any particular

project. Credits are currently tokenized from legacy ledgers, including Verra.

Likvidity also has a utility token, LIKK, which can be staked in return for rewards in the form of LCO2

tokens and escrowed LIKK, or esLIKK. LIKK and esLIKK are governed by their tokenomics, including a

vesting schedule for stakers, a distribution rate, rewards for liquidity provision, a release schedule, and

a supply cap at 1 billion tokens. Users can offset their own emissions with their staking rewards, and

similar to the NORI token, LIKK is a cryptocurrency, meant to be used as a medium of exchange.

B.3.7 Others

There are many others not covered here, but we finish by mentioning a few that deal with carbon capture

in some adjacent ways to the above. Regen Network is a custom blockchain made to host climate data

and carbon credits [173]. It was built with the Cosmos SDK, whose native token is the REGEN token.

They mint NCT tokens (of the same standard as the Toucan NCT tokens) as fungible tokens, and have

partnered with Toucan to bridge between the Regen Network and Polygon [115].

Other groups use NFTs to tokenize, conserve, and reforest land. Cascadia Carbon allows users to tokenize

131

trees into a so-called NFTree, and gives rewards in their native token, CODEX, which is meant to be a

carbon-backed stablecoin [152]. Other groups have the concept of an NFTree, including NFTreeHaus

[168], and some groups simply called NFTrees [134, 169]. Further groups, like Rewilder, raise money with

NFTs to purchase and conserve land, effectively tokenizing the land similar to the concept of an NFTree

[174]. Finally, Save Planet Earth has various projects combatting climate change, which are facilitated

by their cryptocurrency SPE, which is traded on BNB [172]. As they grow, they will sell carbon offsets

which can be bought with SPE, advocating their cryptocurrency as a medium of exchange more broadly.

B.3.8 Summary

While there is some reasonable amount of similarity between tokenized carbon credits—most tokens

represent one tonne of captured carbon, captured by a reputable source—tokenized carbon credits vary in

fungibility status, methodology, associated fungibility layers and utility tokens, and the hosting blockchain.

Some represent retired tokens, some unretired; some allow for secondary market trading, while others do

not; for some the bridge is two-way, while for others tokenized carbon credits cannot be redeemed for

underlying carbon credits on a legacy ledger; and some are explicitly concerned with the permanence of

carbon storage, implementing insurance protocols or diversifying risk, while others do not explicitly take

permanence into account.

However, it is in the fungibility layer that we get particular disunion. Of the examples we gave, Nori and

Likvidity achieve fungibility through a utility token (NORI and LIKK, respectively), each of which is

governed by a custom tokenomic structure. Toucan’s Nature Carbon Tonne (NCT) token and Flowcarbon’s

planned Goddess Nature Token (GNT) both target nature-based solutions, but are backed by distinct

methodologies. Carbovalent’s Blue Carbon Credit (BCC), which targets carbon sequestration in coastal

wetlands, and Forest Carbon Credit (FCC), which targets carbon sequestration in forests, both target

nature-based solutions, but at a more granular level. Toucan’s Base Carbon Tonne (BCT), MOSS’s

MCO2 token, and Likvidity’s LCO2 token represent generic carbon credits, though MCO2 credits are

chosen and tokenized at the discretion of MOSS, BCT are Verra credits, and LCO2 tokens represent part

of a diversified portfolio of credits. Each of these fungibility layers is an attempt to make carbon credits

tradeable with high liquidity, but we can see that in practice these trading pools do not intersect.

B.4 Trading Carbon Credits

Fungibility layer tokens tend to be traded on automated market makers (AMMs) rather than orderbook-

style exchanges. At the time of writing, Toucan’s BCT can be traded on QuickSwap and SushiSwap

(Polygon), and NCT can be traded on Osmosis via the Regen Network. Flowcarbon’s GNT can be

traded on SushiSwap as well. MCO2 can be traded on Uniswap and QuickSwap. The only exception

is Carbovalent, which has an orderbook-style decentralized exchange, called Carbon DEX, which is a

132

central limit order book (CLOB), though there is nothing technical preventing trading on an AMM.

While some of these carbon credits trade on the same AMMs, to our knowledge there are no trading

pools directly between tokenized carbon credits from distinct projects. There are definitely no trading

pools that combine carbon credits from various projects for higher liquidity.

Carbon credits are also hosted on a variety of distinct chains. Of the tokenized carbon credits we surveyed,

these include Solana, Ethereum, Polygon, Celo, and the Regen Network. Toucan is by far the most

prolific of these, as their tokens are hosted on Polygon, Celo [114], and Regen Network [115]. Much work

has gone into blockchain interoperability, [37] including to develop cross-chain swaps and cross-chain

smart contracts, [101, 148] which may play a role in facilitating cross-chain carbon markets.

Despite fungibility layers, pooling mechanisms, and any cross-chain bridging, the market liquidity is

fractured. Even so, each of the aforementioned projects hopes to trade on-chain with high liquidity.

Toucan argues that pooling allows “for some level of commoditization by pooling similar carbon tokens,”

and claims that “this is necessary to produce a transparent price signal to the market for different

categories of carbon credits.” [175] Flowcarbon argues that “liquidity is at the heart of any efficient

market,” and that it “reduces market volatility and overall risk for the market participants.” [160] Finally,

Open Forest Protocol (OFP), whom we will see in Section B.6, argues that carbon markets as-is are

“fragmented, illiquid, and prone to problems of ... price volatility.” [171] The simple advantage of the

pool token as a solution for market liquidity is that it is fungible and higher in total quantity than its

individual constituents.

The solution to this fractured market may include more complex and diverse pools. However, we note a

tension between pooling for high liquidity and preserving the key characteristics of each carbon credit.

Because existing token pools value all the constituent tokens equally, any time tokenized carbon credits

are pooled together, their individual differences beyond the pool’s acceptance criteria are discarded for

the sake of fungibility. Any such pools will likely have to be able to value constituent tokens relative to

each other, not just at a rate of one-for-one.

B.5 Programmable Carbon

In addition to trading, we consider interoperability in terms of the applications that are built on carbon

credits. Because interoperability manifests itself in part in how easy or difficult it is to build applications

on top of these credits, the kinds of applications which build on tokenized carbon credits are a key

component that could inform token interoperability standards. There are already a variety of applications

that build directly on tokenized carbon credits or the data which backs credits. Let us review a number

of them, and then discuss some key takeaways.

133

B.5.1 Offsetting Services

A primary purpose of tokenized carbon credits is that they can be retired to offset emissions. Aside from

the retirement functionality that all tokenized carbon credits given here offer, there are already some

services built around offsetting emissions. For example, from the projects we have seen, Flowcarbon also

offers automated offsetting for Web3 users and Nori offers automated offsetting for businesses [24].

B.5.2 Carbon-Backed Digital Assets

There is an emerging landscape of tokenized digital assets which are backed by carbon credits or related

climate data. KlimaDAO, who works with Toucan, issues a carbon-backed currency called KLIMA [162].

KLIMA tokens are backed by at least one retired carbon credit from various sources, including BCT

and MCO2 tokens. KLIMA can also be minted by the rules governing the treasury, which themselves

are governed by the DAO. The goal of this project is to drive up demand for carbon credits, creating

what they call a carbon economy in which the currency is carbon-backed, and the true cost of carbon is

internalized into every transaction.

There are various other projects with similar goals to KlimaDAO. Climatecoin has a coin, ClimateCoin,

backed by carbon credits, a governance token, CLIMAT, and a DAO ecosystem that attempts to facilitate

and fund sustainable development and make a transparent marketplace [154]. (Note that Climatecoin has

a low TRL [210].) KumoDAO is a small project which attempts to back a stablecoin with carbon offsets

[163]. And, as previously mentioned, other examples include CODEX and the NORI token. Finally, Arbol

sells agriculture and energy derivatives based on climate data collected and monetized on dClimate [149].

B.5.3 Climate Insurance

Arbol also offers parametric insurance to guard against issues related to climate, e.g. unexpected weather.

The payout is based on a predetermined trigger event, governed by a smart contract, which can be verified

using data on dClimate (see Section B.6).

B.5.4 Art and Gaming

Finally, there is a thriving art and gaming ecosystem built around tokenized carbon credits, ranging

from NFTs to metaverse projects. Celostrials is an algorithmically-generated collection of NFTs on the

Celo blockchain which have partnered with Toucan, and will allow holders of Celostrials to “carbonize”

their NFT with NCT tokens [153]. Celostrials holders will also be able to earn so-called climate activity

rewards. Flowcarbon is also launching a collection of NFTs, named Flow3rs, which were auctioned

off to support various climate-positive projects, including projects which tropical forest conservation,

134

biodiversity, and carbon sequestration [159]. Flowcarbon also calculates and offsets on-chain emissions of

NFT projects. Moving on, Likvidity has the Origins Collection, which is a collection of one thousand

twenty carbon-backed NFTs [7, 188]. Holders of Origins NFTs can stake their NFTs and earn carbon

credits, and have other benefits as part of the originators club. And finally, Ecosapiens is an NFT project

where minted NFTs are backed by fifteen tonnes of captured carbon, and which are meant to be used as

profile pictures (PFPs) [141].

Taking a slightly different direction, Nori has an API that allows any artist who mints NFTs to offset

their minting, and then choose a percentage of their sales that are automatically diverted to purchase

and retire carbon offsets. KlimaDAO also interacts with the offsetting process with an initiative called

“love letters,” where someone retiring carbon can include a message, or a “love letter to the planet,” which

accompanies the act of retirement. These love letters are encoded on the blockchain, and KlimaDAO has

a dashboard where they can be seen.

Finally, in the metaverse space, Metamazonia is building a 3D, photorealistic metaverse to make a digital

twin of certain parts of the Amazon rainforest [167]. The metaverse can be explored with an avatar.

They use NFTs as a funding mechanism to prevent deforestation, promote R&D in the Amazon, and to

fund other projects. NFTs correspond to pieces of land in the metaverse, which themselves correspond to

coordinates in the physical reserve in the Amazon rainforest.

B.5.5 Relating to DeFi

Some of the aforementioned efforts relate to trends in decentralized finance (DeFi). In particular, these

are carbon-backed digital assets like KLIMA and Climatecoin that attempt to back a more typical digital

asset, such as a stablecoin, with carbon credits. Others include derivatives, both on climate data (e.g.

Arbol) [149] and on carbon credits themselves (e.g. Carbovalent’s index tokens) [151]. While still in

early stages, as tokenized carbon credits mature as a digital asset class, we may see more in the way of

derivatives, yield farming, synthetics, and other DeFi-related applications [189, 200].

B.5.6 Key Takeaways

There is already a vibrant ecosystem of applications that build on tokenized carbon credits which align

with the general goals of climate action, from art and NFTs to services and derivatives. As carbon

credits grow in prominence on blockchains, this is likely to continue developing. From the lens of token

interoperability, note that there is little to no technical hurdle to interoperation between various carbon

credits, so long as they are on the same blockchain. Because these tokens conform to established token

standards, swapping out e.g. which carbon credits are retired, or which carbon credits back an NFT of

some kind (for two examples), would likely be little more than changing a contract address or a line of

code.

135

The real hurdle, however, to interoperation between tokenized carbon credits in the above examples comes

in the semantic meaning of each of the applications: retiring one carbon credit instead of another is not

necessarily the same thing semantically, even though technically it is likely a nearly identical process;

likewise, the carbon credits that back a particular NFT have to match the ethos and goals of the NFT

project itself, so it is unclear a priori if one carbon credit can be substituted for another in these instances.

B.6 Climate Data Availability

Readily available climate data is essential for the process of verifying and tokenizing carbon credits which

are substantiated by novel methodologies, and for building applications built on carbon credits which

rely on up-to-date climate data. Despite the fact that at the time of writing most carbon credits are

tokenized from legacy ledgers, for which data is collected and analyzed off-chain, there are good reasons

for the data to be publicly stored, and for the methodology to be transparently applied to the data. These

include verifiability, reproducibility, and reducing the need to trust intermediaries, and are generally in

line with the advantages blockchains offer to voluntary carbon markets. Furthermore, if the process can

be largely automated, and climate data can be collected and made available en masse, then the process

of verification may become more scalable. Finally, if blockchain-based carbon credit projects rely only on

legacy ledgers, then the project may be dependent on decisions made by verification agencies out of their

control (see Verra’s recent statement on tokenized carbon credits and Toucan’s response) [113, 176]. We

will take a brief look into three organizations which are looking to collect and store climate data in a

decentralized fashion.

B.6.1 Filecoin Green

Filecoin is a decentralized ledger for storing data using the IPFS protocol. With Filecoin, a user can

pay for storage to be hosted on the Filecoin network over a specified period of time. Filecoin Green is

an initiative on Filecoin to store climate data and make it broadly available [158]. Their stated goal

is to build infrastructure so that anyone can make transparent and substantive environmental claims.

Their first initiative on climate data is to measuring the electricity consumption of their validators to be

transparent about the emissions of the blockchain itself. Their goals are to host more extensive climate

data and make it available to various applications, which could include tokenized carbon credits.

B.6.2 dClimate

dClimate is a decentralized network for climate data, consisting of four layers: the governance layer,

through which dClimate operates like a DAO via its native WTHR token; the oracle layer, which makes

climate data available to applications, operating like Chainlink; the blockchain and data storage layer,

136

where data is stored via IPFS; and the marketplace layer, where users can access (and pay for) data [157].

Climate data is published confidentially until accessed and paid for by a user, though contributors can

choose to make their data free. As we mentioned previously, Arbol offers parametric insurance against

climate-related events, using dClimate as its data source. More broadly, dClimate is attempting to lower

the barrier to entry for climate data capture and monetization, and could host data which is relevant to

carbon credits and the corresponding ecosystem of applications.

B.6.3 OFP

The Open Forest Protocol (OFP)is a protocol built to manage forest data, with the goal of improving

forests [171]. While the protocol hopes to eventually mint carbon credits backed by data managed by the

protocol, it is also meant to be a more general forest data management tool. The protocol itself has a

native token, the OPN token, which grants access to the OFP, allows a holder to verify or challenge the

accuracy of a specific MRV data upload, and governs the protocol’s parameters as a DAO. When the time

comes, the process of creating carbon credits with OFP is meant to be open and transparent. Users will

be able to create a new project and upload data, which will generate an NFT contract for them. To mint

tokens, on-the-ground forest data must be collected by the OFP field mobile app, after which validators

check the legitimacy of the ground data. Acceptable methodologies to mint carbon credits, as well as any

guards on what types of credits or methodologies are acceptable, will be governed by the DAO.

B.6.4 Key Takeaways

Making climate data readily available to blockchain-based applications, and incentivizing people and

entities to collect and publish that data, will no doubt play an important role in how tokenized carbon

credits are minted and in other financial derivatives built on-chain using the data. If the data is high

quality, this could support a wide range of methodologies which compute over the data to substantiate

tokenized carbon credits on the blockchain. If done in a transparent and verifiable way, this could be a

highly effective marketplace of ideas that works to mitigate climate change and monetize carbon capture

from the atmosphere, among other things.

B.7 Related Organizations

Finally, we mention a few groups that are interested in decarbonizing blockchains, in using blockchains

for climate action, and in making standards for tokenized carbon credits. From the work of these groups,

we are most interested in the work of standards for tokenized carbon credits, though each contributes

more to the ecosystem.

The Crypto Climate Accord (CCA), an initiative to decarbonize blockchains and cryptocurrencies

137

supported by various companies and nonprofits, has as its goal to “develop standards, tools, and

technologies with CCA Supporters to accelarate the adoption of and verify progress toward renewably-

powered blockchains by the 2025 UNFCCC COP30 conference.” [156] It puts forward various solutions,

including guidance for accounting and reporting electricity use and carbon emissions from cryptocurrencies.

The Climate Collective is a coalition of entrepreneurs, investors, non-profit organizations, and scientists,

whose aim is to promote blockchains and cryptocurrencies (Web3 infrastructure) as a tool for climate

action at scale [155].

Finally, Gold Standard has launched some working groups with the aim to develop “an open, global

collaboration on digital solutions for carbon market standards and monitoring, reporting, and verification

(MRV).” [124] They consist of a digital assets working group, which “looks at the role of blockchain to

track carbon credits in decentralised environments;” an open APIs and digital infrastructure working

group, which “looks into how new digital methodologies can increase the robustness of carbon credit

calculations;” and a digital MRV working group, which looks into the “details of how to turn earth

observations into meaningful carbon metrics.”

While we expect the token contracts of these carbon credits to all conform to established token standards,

we do not yet have a standardization framework for methodologies substantiating carbon credits. Because

methodologies can vary widely, as we saw in Section B.3, we do not expect standards to be strictly

prescriptive in the way that token standards are. However, standards on token metadata, data collection,

or measurement practices could be useful as key guidelines to ensure that tokenized carbon credits are

rigorously substantiated and can be effectively compared along various metrics.

B.8 Conclusion

Tokenized carbon credits vary in their implementation details and in what substantiates them (Section

B.3). As the goal of this research is to help maximize interoperability between tokens, we face the technical

hurdle that carbon credits exist on various blockchains and with various token standards. Luckily, in

practice most (non-fungible) tokenized carbon credits are pooled into a fungible token that conforms

to established token standards. Thus by using inter-chain bridges, the technical hurdle itself for token

interoperability is not particularly high.

Instead, as we saw, interoperability can be hampered by variations in what substantiates a token. In

contrast to token standards, where it is productive to have all tokens conform to established standards, it

is likely unproductive to fully standardize the data and methodologies that substantiate carbon tokens.

Instead, we can drive innovation with an open and transparent marketplace for methodologies of data

capture and processing that rewards accuracy and efficacy. In time, such an open marketplace could be

supported by the various decentralized carbon data collection and availability schemes (Section B.6), and

reproducible or verifiable computation over them. Even so, organizations seeking to form some consensus

138

around standardization could prove productive in providing a common framework for these methodologies

(Section B.7), which could include standard ways of structuring token metadata.

In some sense, however, this desire for a rich variability in the methodologies substantiating tokenized

carbon credits stands in conflict with the nearly ubiquitous goal of having as much liquidity as possible

on-chain by pooling carbon credits together (Section B.4). This is because, as they exist, fungibility

layers pool tokens by valuing them one-for-one, and so tokens can be pooled together insofar as they are

valued equally to each other. This achieves fungibility by discarding differences between the constituent

tokens in methodology, project type, vintage, etc. Because we want carbon credits to be able to vary in

price depending on their characteristics, ideally where higher quality credits are valued more highly, we

are inherently restricted in our ability to pool tokens and achieve higher levels of liquidity on-chain.

Ideally, we would be able to pool tokens in such a way that values distinct tokens differently according

to some market price (e.g. a carbon credit worth twice as much as another would trade for twice as

many pool tokens as the other) and allows for dynamic price discovery between the constituent tokens

over time. This would achieve the goals stated above of high liquidity and fungibility, while still valuing

carbon credits individually with their granular data, encouraging a rich landscape of tokenized carbon

credits. It could also prove useful for interoperability as it relates to applications building on tokenized

carbon credits (Section B.5), achieving our goals of interoperability more broadly.

139

140

Glossary

address An address, or wallet address, is a public key used to represent a destination for transactions on

a blockchain network. Addresses are used to send and receive digital assets, and they are generated

using cryptographic algorithms to ensure security. See also wallet. 19

automated market maker An automated market maker (AMM) is a type of decentralized exchange

(DEX) that uses a mathematical formula to determine the price of assets being traded on the

platform. This in contrast to traditional centralized exchanges, which match buyers and sellers and

take a cut of the transaction as a fee. AMMs are commonly used in decentralized finance (DeFi)

applications, and they play an important role in providing liquidity and enabling the trading of

digital assets. 15, 145

Binance Smart Chain Binance Smart Chain (BSC) is a blockchain developed by the Binance exchange.

It is built on top of the Ethereum Virtual Machine (EVM) and uses a similar smart contract language

to Ethereum. 18, 145

blockchain A blockchain is a distributed and decentralized digital ledger that records a secure and

immutable ledger of transactions across a network of computers. Each transaction, bundled into a

block, is cryptographically linked to the previous one, forming a chain of blocks, hence the name

“blockchain.” Blockchains are commonly used for cryptocurrencies like Bitcoin or Ethereum, but

have applications beyond digital currencies including supply chain management, voting systems,

and smart contracts. 15, 17

cross-chain bridge A cross-chain bridge is an application, not necessarily decentralized, that allows

for the transfer of assets or information between different blockchains. Possible assets that can

be exchanged or transferred include tokens, coins, and other digital assets, even if the blockchains

being bridged have different consensus algorithms, security models, and underlying infrastructure.

15, 19

crypto insurance protocols Crypto insurance protocols are DeFi applications that provide insurance

coverage for assets in the crypto space. These protocols are designed to mitigate the risk of loss

for investors in the event of unexpected events such as hacking, smart contract vulnerabilities, or

market crashes. They typically work by pooling funds from multiple investors, who then share the

141

risk of loss. Claims are processed and approved by a variety of different mechanisms, depending on

the nature of the insured event and whether or not human intervention is required to assess claims.

15, 142

crypto lending Crypto lending, or decentralized lending, refers to the practice of borrowing and lending

digital assets within the context of blockchain-based financial systems, such as DeFi platforms.

Users can lend their cryptocurrency holdings to others in exchange for earning interest on their loans,

while borrowers can access funds by providing collateral in the form of other cryptocurrencies. These

transactions are facilitated through smart contracts on blockchain networks, instead of traditional

intermediaries like banks. 15, 142

decentralized application A decentralized application (dApp) is a software application that runs on a

decentralized network like a blockchain, and is not controlled by any central authority. Decentralized

applications can be used for a variety of purposes, ranging from financial applications like exchanges,

to gaming platforms, and social media sites. 142, 145

decentralized exchange A decentralized exchange (DEX) is a type of decentralized marketplace that

operates on a blockchain, allowing users to trade cryptocurrencies and digital assets directly with

each other without the need for intermediaries. Examples of DEXs include, but are not limited to,

automated market makers AMMs and decentralized auctions. 15, 141, 145

decentralized finance Decentralized finance (DeFi) refers to a financial ecosystem built on blockchain

technology that largely operates without traditional intermediaries. It enables peer-to-peer trans-

actions and interactions with digital assets through smart contracts and decentralized protocols.

DeFi includes various services like lending, borrowing and trading. DeFi applications include, but

are not limited to, DEXs, AMMs, crypto lending, and crypto insurance protocols. 15, 145

decentralized governance Decentralized governance refers to a system of decision-making and admin-

istration in which power is distributed among a network of individuals or entities, rather than being

centralized in a single governing body. In the context of blockchain technology and cryptocurren-

cies, decentralized governance typically refers to a system in which stakeholders collectively make

decisions about the direction and management of a particular network or protocol, often through

the use of decentralized voting mechanisms or on-chain proposals. 18

entrypoint function A contract entrypoint function is a public-facing function that allow users to

interact with the smart contract and make changes to its state. Examples of entrypoint functions in

a smart contract might include functions to transfer funds, mint new tokens, vote on proposals, or

access information about the state of the contract. In general, the entrypoint functions are defined

by the contract developer and are intended to provide a way for external users to interact with the

contract in a meaningful way. 16

Ethereum Ethereum is a decentralized, open-source blockchain platform that enables the creation and

execution of smart contracts and decentralized applications (dApps). It was created in 2015 by

142

Vitalik Buterin and has since become one of the largest and most widely used blockchain platforms

in the world. Its native token, ETH, is used to pay for gas fees. It also supports Solidity, a Turing-

complete programming language, which allows developers to build a wide variety of applications,

from decentralized exchanges and prediction markets to games and social networks. 16, 141, 143–145

Ethereum Virtual Machine The Ethereum Virtual Machine (EVM) is a decentralized, Turing-complete

virtual machine that serves as the runtime environment for executing smart contracts on the

Ethereum blockchain. Developers can write and deploy smart contract code in high-level program-

ming languages like Solidity, which is then compiled into bytecode that can be understood and

executed by the EVM. 141, 144, 145

flash loan In DeFi, a flash loan is a type of decentralized loan that allows a user to borrow funds for

a single, atomic transaction, without collateral and with a very low interest rate. The must loan

is repaid automatically at the end of the transaction. Any transaction that takes out a flash loan

which does not end in repayment is invalid. Flash loans are used for a variety of purposes in DeFi,

including exploiting market inefficiencies and executing arbitrage strategies. 18, 143

flash loan attack A flash loan attack is a type of exploit in DeFi in which an attacker uses funds

borrowed with a flash loan to execute a series of manipulative trades or arbitrage opportunities.

The attacker profits from these trades at the expense of other users, such as liquidity providers,

taking advantage of the borrowed funds without bearing any risk or requiring collateral. 18

front-running attack In a front-running attack, an actor inserts certain transactions in a block ahead

of others which, by their order, are profitable by gaining an unfair advantage and causing financial

losses to victims. This manipulation involves monitoring pending transactions, identifying lucrative

opportunities, and quickly submitting their own transaction with higher fees to exploit market

inefficiencies. 17

gas Gas is a term used to describe the fee required to process a transaction on Ethereum and other

blockchains, paid in the blockchain’s native token (e.g. ETH). The amount of gas required for a

transaction depends on the computational complexity of the operation being performed and the

demand for block space. 143

liquidity provider In DeFi, a liquidity provider is an entity who supplies their digital assets to liquidity

pools, enabling trading and financial activities on the platform and earning rewards in return. 16,

143

peg A peg in the context of digital assets refers to a fixed exchange rate between a cryptocurrency and

a real-world asset, such as the US dollar or gold. A pegged asset or cryptocurrency is one whose

value maintains a stable value at some peg. Some pegged assets are backed by a reserve of the asset

they are pegged to, which can help ensure the stability of the peg even during market fluctuations.

Others maintain their peg algorithmically through various debt mechanisms. 144

143

smart contract A smart contract is a computer program, stored on a blockchain, that automatically

executes when certain conditions are met. Smart contracts do not require intermediaries to enforce

their terms. They can facilitate exchange of assets, such as cryptocurrencies, and have a wide

variety of use cases. 15, 18, 141

Solidity Solidity is a high-level programming language for writing smart contracts that can be compiled

into bytecode be executed on the Ethereum Virtual Machine (EVM), and stored on the Ethereum

blockchain. 143

stablecoin A stablecoin is a type of cryptocurrency designed to maintain a stable value, typically

pegged to a stable asset, such as a fiat currency (e.g., USD, EUR) or a commodity (e.g., gold).

The main goal of stablecoins is to reduce price volatility commonly associated with traditional

cryptocurrencies like Bitcoin or Ethereum, providing a more reliable medium of exchange and

store of value. Stablecoins achieve stability through various mechanisms, such as collateralization,

algorithmic control, or a combination of both, which are designed to ensure that the value of the

stablecoin remains relatively constant over time. 15, 18, 144

synthetics Synthetics are digital assets that are designed to track the price of another asset, such as a

traditional financial instrument, a commodity, or another cryptocurrency. They include, but are

not limited to, stablecoins, and like stablecoins maintain their peg through various mechanisms

such as collateralization, algorithmic control, or a combination of both. 15

Tezos Tezos is a third-generation, proof-of-stake blockchain which supports smart contracts written in

Michelson. Its native token is XTZ. 15, 145

transaction A transaction is an action or operation that alters the state of the blockchain network. It

typically involves the transfer of digital assets, such as cryptocurrencies or tokens, from one user

to another, but can also encompass various other types of interactions, such as smart contract

executions, data storage, or authentication processes. Transactions are recorded in blocks and

cryptographically linked together. Each transaction must be verified and validated by network

participants, known as miners or validators, to ensure its authenticity and compliance with the

network’s consensus rules before being added to the blockchain. 18, 144

wallet In the context of a blockchain, a wallet refers to a public, private key pair which can be used to

execute transactions on a blockchain and hold digital assets. Transactions originating from a wallet

must be signed by the private key. The term wallet also refers to software or a device that stores

and manages blockchain-based digital assets. 19, 141

yield farming Yield farming is the practice of providing liquidity to DeFi protocols in exchange for

rewards in the form of interest or tokens. The rewards can come from the fees generated by the

protocols, or through inflation, and are typically distributed to liquidity providers as a way of

incentivizing them to provide liquidity and ensure the stability of the platform. 15

144

Acronyms

AMM Automated market maker. 15–17, 19, 141, 142

BSC Binance Smart Chain. 18

dApp decentralized application. 142

DeFi decentralized finance. 15, 18, 141–144

DEX Decentralized exchange. 15, 141, 142

ETH The native token of the Ethereum blockchain. 143

EVM Ethereum Virtual Machine. 141

XTZ The native token of the Tezos blockchain. 144

145

	Introduction
	Formal Specification and Verification of Smart Contracts
	Dexter2 Verification

	Challenges in Contract Specification
	Challenge 1: Reasoning About a Specification's Completeness
	Challenge 2: Reasoning About Contract Upgrades
	Challenge 3: Reasoning About Optimized and Performant Code

	Formal Tools for Specifying Financial Smart Contracts
	Associated Publications

	Related Work
	Smart Contract Language Embeddings
	Low-Level Language Embeddings
	Intermediate- and High-level Language Embeddings

	High-Level Tools in Proof Assistants
	Formal Specification and Verification in Proof Assistants
	Smart Contracts Verified Interactively
	Dexter2, a Formally Verified AMM
	Djed, a Formally Verified Stablecoin
	A Formally Verified Generic AMM Protocol

	Proof Assistants and Embedded Theories
	Conclusion

	Background
	ConCert From a High Level
	Continuing in More Detail
	Smart Contracts in ConCert
	The Blockchain in ConCert
	Blockchain Semantics in ConCert
	Specification and Proof in ConCert

	Conclusion

	Axiomatization and Metaspecification
	Introduction
	Related Work
	The Problem of (In)Correct Specification
	Contract Axiomatization and Metaspecification
	Contract Axiomatization
	Metaspecification

	Example: Formalizing Structured Pools
	The Formal Specification, or Contract Axiomatization
	Storage
	Interface
	Entrypoint Functions

	The Formal Metaspecification
	Rational to natural-number arithmetic
	Specifying the other entrypoint

	(In)Correct Contract Specifications
	Relationship to Refinement Types

	Limitations and Future Work
	Formal Theories of DeFi and AMMs

	Conclusion

	Contract Morphisms
	Introduction
	Related Work
	Contract Morphisms
	Morphisms of Pure Functions
	Contract Morphisms in ConCert

	Morphisms to Specify and Verify Contract Upgrades
	Further Applications of Morphisms in Formal Verification
	Hoare Properties and Contract Morphisms
	Isomorphisms and Propositional Indistinguishability

	Conclusion

	Contract Bisimulations
	Introduction
	Related Work
	Contract Isomorphisms
	Bisimilarity
	Bisimulations in ConCert
	Constructing Bisimulations via Contract Isomorphisms

	Contract Bisimulations Induce Generated Graph Isomorphisms
	Trace Equivalences in ConCert
	Contract Traces
	Contract Trace Morphism
	Contract Trace Isomorphisms

	Contract Morphisms to Contract Trace Morphisms

	Using Bisimulation as a Tool for Formal Specification
	Linked Lists and Dynamic Arrays
	The Bisimulation
	Contract as a Specification
	Porting Properties Over the Bisimulation

	Conclusion

	Conclusion
	References
	Structured Pools for Tokenized Carbon Credits
	Introduction
	Related Work
	Structured Pools
	Deposits
	Withdrawals
	Trades

	Properties of Structured Pools
	Limitations
	Conclusion

	Tokenized Carbon Credits
	Introduction
	Outline

	Related Work
	Tokenized Carbon Credits
	Toucan
	Flowcarbon
	MOSS
	Carbovalent
	Nori
	Likvidity
	Others
	Summary

	Trading Carbon Credits
	Programmable Carbon
	Offsetting Services
	Carbon-Backed Digital Assets
	Climate Insurance
	Art and Gaming
	Relating to DeFi
	Key Takeaways

	Climate Data Availability
	Filecoin Green
	dClimate
	OFP
	Key Takeaways

	Related Organizations
	Conclusion

	Glossary
	Acronyms

