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Abstract

Meta Properties of Financial Smart Contracts

Derek Sorensen

Financial smart contracts routinely manage billions of US dollars worth of digital assets, making bugs in

smart contracts extremely costly. Because of this, much work has been done in formal verification of

smart contracts to prove a contract correct with regards to its specification. However, financial smart

contracts have complicated specifications, and it is not all straightforward to write one which correctly

captures all of its intended high-level behaviors. To mitigate this challenge, we develop formal tools to

target meta properties of smart contracts, which are properties of a contract that are intended by, but

out of scope of, its specification. The targeted properties include the economic behaviors of the contract,

properties relating to its upgradeability features, and the intended behaviors of systems of contracts. The

formal tools presented are written in Coq.
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Chapter 1

Introduction

Smart contracts1 are programs stored on a blockchain that automatically execute when certain predefined

conditions are met. Financial smart contracts are broadly defined as smart contracts that serve as a digital

intermediary between financial parties. These include contracts collectively referred to as decentralized

finance (DeFi), and come in many forms, including decentralized exchanges (DEXs), automated market

makers (AMMs), crypto lending, synthetics (including stablecoins), yield farming, crypto insurance

protocols, and cross-chain bridges [135]. Financial smart contracts frequently manage huge quantities

of money, making it essential for the underlying code to be rigorously tested and verified to ensure its

correctness and security [144].

A defining characteristic of smart contracts is that once deployed, they are immutable. Thus if a contract

has vulnerabilities, the victims of an attack are helpless to stop the attacker if the contract wasn’t designed

with the foresight sufficient to respond. Due to the high financial cost of exploits, it can be worth the

large overhead cost to formally verify a smart contract before deployment.

1.1 Formal Verification of Smart Contracts

Much work has been done in formal verification of smart contracts [17, 38, 45, 63, 97, 121, 131]. Broadly

speaking, the goal of formal verification is to formally prove that a contract is correct with regards

to a specification. However, financial smart contracts have complicated specifications, and it is not

at all straightforward to write one which has all of its intended behaviors. One reason for this is

that specifications of financial contracts inevitably include behaviors which are expressed at a level of

abstraction higher than a contract specification.

Let us illustrate with the formal verification work on Dexter2, an AMM on the Tezos blockchain.

1This document contains a lot of blockchain jargon. These words are defined in the glossary, and each entry can be
accessed from the body of the document by clicking on an instance of the corresponding word, e.g. on smart contract.
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∆x

∆y

Figure 1.1: A trade of ∆x for ∆y along the indifference curve xy = k.

1.1.1 Dexter2 Verification

Dexter2 has been formally verified by three different groups using three different formal verification tools

[34, 80, 102]. Each was based on the same informal specification [16].

The informal specification describes the contract interface, including its entrypoint functions, error

messages, outgoing transactions, the contents of its storage, some invariants of the storage (including that

its store of tokens never fully depletes), fees, and the logic of each of the entrypoint functions. This is a

standard and detailed contract specification. Note, however, that while the specification is detailed on the

contract design and interface, it doesn’t include anything about expected or desired economic behavior.

This is not because the expected or desired economic behavior is unknown or uninteresting. It was clearly

articulated by Vitalik Buterin, co-founder of Ethereum, in what he wrote in March 2018 about AMMs on

the online forum Ethereum Research [33]. Buterin proposed that AMMs trade between a pair of tokens

along an indifference curve

xy = k, (1.1)

where x represents the quantity held by the contract of the token being traded in, y represents the

quantity held by the contract of the token being traded out, and k is a constant. The tokens held by

the contract come from liquidity providers, which are investors who deposit tokens into the AMM in

exchange for a reward, most often a share of transaction fees. That k is constant means that a trade of

∆x of one token yields ∆y of another such that the product from (1.1) stays constant at k:

(x+∆x)(y −∆y) = k.

Buterin argued that an AMM that trades along (1.1) features efficient price discovery. He also argued

that it can properly incentivize liquidity providers by charging a 0.3% fee on each trade to give to them.

16



We can probably convince ourselves that the informal specification of Dexter2 [16] features these economic

qualities described by Buterin, including efficient price discovery and some suitable incentive mechanism

so that investors deposit tokens into the AMM contract and provide liquidity to the market. However,

concluding that the informal specification [16] or its formal counterparts [34, 80, 102] actually imply

any of these economic behaviors is not a given fact. AMM fees and liquidity provision alone are highly

complexs topics, and are the subject of several economic studies, including: choosing optimal transaction

fees [56, 62, 61], how liquidity providers react to market changes [69], and how all of that relates to the

curvature of xy = k [8]. It was also shown that front-running attack attacks can warp the incentive

scheme of the blockchain itself in such a way that could compromise its underlying security [43].

To complicate matters, a brief study of the three formalizations [34, 80, 102] of the Dexter2 specification

[16] reveals that each differs substantively both in how the properties of the informal specification are

formalized, and in what assumptions are made in the process of verification.

We can see a general problem in specifying financial smart contracts. Financial smart contract specifications

are designed to articulate properties, in this example of an economic nature, which are essential to the

contract’s correct functionality but out of scope of said specification. Unfortunately, failing to correctly

capture these intended properties in the specification routinely leads to extraordinarily expensive attacks.

Furthermore, because these are vulnerabilities of the specification, as it stands formal verification is useless

to mitigate them.

1.2 Contract Vulnerabilities and (In)Correct Specifications

Vulnerabilities of financial smart contracts are a serious cause of substantial financial loss. Blockchain-

based applications lost 2.44 billion USD in 2021 and 3.6 billion USD in 2022 due to attacks [23, 146]. In

2022, financial smart contracts were the most attacked type of blockchain-based application, making up

about two-thirds of all attacks [60, 23]. Importantly, attacks which exploit improper business logic or

function design—those which concern us here—are in the top three causes of loss [23, p.10].

We can isolate three classes of vulnerabilities due to poor contract design and specification. These

are: economic vulnerabilities, vulnerabilities introduced through poorly-specified upgrades or contract

upgradeability, and vulnerabilities due to difficult-to-specify behaviors of a systems of interacting contracts.

For each of these classes of vulnerabilities, we give examples of recent, successful attacks and discuss what

is needed to target such vulnerabilities with formal verification.

1.2.1 Economic Attacks

Poorly specified financial smart contracts can be vulnerable to costly economic attacks, or attacks on the

contract’s economic design.

17



Take for example Beanstalk, an Ethereum-based stablecoin protocol which uses a decentralized governance

protocol. The governance protocol features an emergency commit function, which gives a supermajority

of governance votes power to quickly respond to an emergency by approving and executing a proposal in

one single vote. On April 17, 2022, an attacker used a flash loan to temporarily buy a supermajority of

governance tokens and execute a proposal, draining the contract of approximately 77 million USD in lost

contract assets [54].

The tool used in the attack, flash loans, are loans mediated by a smart contract, issued for the duration

of a single transaction. Due to their atomicity, flash loans remove the creditor’s risk of debt default,

and thus enable enormous, uncollateralized loans. For example, the Aave flash loan pool has had in

excess of 1 billion USD which can be loaned out [112]. Flash loans can introduce unintuitive contract

behavior, deviating from that of traditional markets, and have been extensively studied [65, 66, 112, 134].

Importantly, the Beanstalk attack leveraged the unexpected behavior due to the availability of flash loans,

exploiting the faulty design of the governance mechanism rather than incorrect code [57].

More examples of successful flash loan attacks include attacks on the Spartan Protocol and Pancake

Bunny, two DeFi contracts on the Binance Smart Chain (BSC). Attackers used flash loans to make huge

trades and temporarily manipulate market prices of certain assets. Both of these contracts used these

market prices in the contract logic, and in both cases this lead to pathological—though, again, correct

according to the specification—contract behavior. In May 2021, an attacker drained the Spartan Protocol

contract for a profit of roughly the equivalent of 30 million USD [31, 79]. Another attacker drained

Pancake Bunny of 114k WBNB and 697k BUNNY tokens, amounting to about 45 million USD at the

time in lost funds [30, 67, 76, 108].

Finally, Mango Markets, a Solana-based DEX, was attacked in October 2022 for approximately 116

million USD in contract assets [123]. The attack consisted of a complicated and subtle trading strategy

which only a sophisticated trader would be able to see and exploit [23]. CoinDesk reported that the

attacker did everything within the parameters of the platform’s design [87]. Avraham Eisenberg, the

attacker, wrote:

I believe all of our actions were legal open market actions, using the protocol as designed, even

if the development team did not fully anticipate all the consequences of setting parameters the

way they are. [15]

We would recognize each of these exploits as attacks, despite the fact that the contracts were functioning as

specified. This tells us that the specifications did not accurately capture the intended economic behaviors,

and were thus incorrect. To mitigate such attacks by ensuring a specification does accurately capture the

intended economic behaviors, what is needed is a rigorous notion of a specification’s correctness as it

relates to its economic properties, as well as formal tools to reason about a said correctness.
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1.2.2 Unsafe Contract Upgrades

Poorly specified contract upgrades can introduce costly vulnerabilities.

Consider first Nomad, a cross-chain bridge protocol. In August 2022, more than 500 hacker addresses

exploited a bug introduced by a faulty upgrade to one of the Nomad smart contracts [116]. The upgrade

incorrectly added the null address (0x000...000) as a trusted root, which turned off a key safety check,

allowing anyone to withdraw arbitrary amounts of funds from the Nomad contract to their wallet by

calling the contract with a particular payload. The attack resulted in 190 million USD in lost funds

[55, 78].

Similarly, Uranium Finance, an AMM, suffered a costly exploit after a faulty contract upgrade. The

original contract contained a constant, K, equal to 1,000 in three different places, which was used to price

trades. The update changed this value to 10,000 in two places but not the third, presumably to calculate

trades with higher precision. The result of this was that the attacker could swap virtually nothing in

for 98% of the total balance of any output token, which resulted in a loss of 50 million USD of contract

funds [59]. NowSwap, a nearly identical application, upgraded with the same error and incurred a loss of

1 million USD [22].

It is clear that none of these contract upgrades captured the actual intent of the upgrade. Each introduced

vulnerabilities, as small technical changes of the contract, which compromised the contract’s fidelity to its

intended design. Indeed, each upgrade was meant to preserve properties of the previous contract version,

regarding pricing or permissions, while changing others. As each failed to do so, they were incorrect.

In order to safely specify contract upgrades and upgradeable contracts, what is needed is a rigorous

notion of a correct specification of individual contract upgrades as well as contract upgradeability, as well

as formal tools to reason about said correctness.

1.2.3 Complex System Behavior

Finally, poorly specified systems of contracts can be vulnerable to extremely costly attacks.

Consider Harvest Finance, a yield aggregator on Ethereum. On October 26, 2020, an attacker used a

flash loan to trade about 17.2 million USDT for USDC on Curve, which temporarily increased the price

of USDC in the Curve Y pool. Due to the fact that Harvest Finance uses the Curve Y pool as a price

oracle in real-time to calculate the vault shares for a deposit, the attacker got into a Harvest vault at an

advantageous rate. In the same transaction, the attacker reversed the trade on Curve, after which the

price of USDC returned to normal in the Curve Y pool, which increased the value of the attacker’s shares

in terms of the now less expensive USDC. The hacker then exited the vault at this new exchange rate for

a profit of 33 million USD in lost user funds [107].
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Smart Contract Vulnerability Loss (USD) dApp Type Exploit Year

Mango Markets Contract Design [87] 115M DEX [123] 2022
Beanstalk Contract Design [57] 77M Stablecoin [54] 2022

Pancake Bunny Contract Design [67] 45M Yield aggregator [30] 2021
Spartan Protocol Contract Design [79] 30M AMM [31] 2021

Nomad Unsafe Upgrade [78] 190M Cross-chain bridge [55] 2022
Uranium Unsafe Upgrade [59] 50M AMM [32] 2021

Cream Finance Complex System [77] 130M DeFi protocol [53] 2021
Harvest Finance Complex System [58] 34M Yield aggregator [52] 2020

Figure 1.2: A small sample of recent attacks, totalling to about 776M USD in lost funds.

Similarly, consider CREAM finance (short for Crypto Rules Everything Around Me), a multi-purpose

DeFi protocol that brands itself as a one-stop shop for decentralized finance. It offers crypto lending,

borrowing, yield farming, and trading services, and has several connected implementations across multiple

chains. An October 2021 attack drained the pool of roughly 260 million USD in assets [53]. The attack

was extremely complex, involving 68 assets and over 9 ETH in gas, roughly 36k USD at the time [53].

Immunefi, a bug bounty platform for smart contracts, diagnoses that the exploit was due to an easily

manipulable price oracle, and uncapped supply of the token yUSD [77]. Even so, the attack is complex

enough that only experts such as Immunefi can give a comprehensive diagnosis.

Aside from complex economic properties, the difficulty in specifying the above examples comes in the utter

complexity of interacting systems of contracts. The intended behavior of a system of contracts, typically

expressed and written as if it were a monolithic entity, can be difficult to preserve when modularizing

the contract design into component pieces without introducing vulnerabilities. In order to safely specify

such systems, what is needed is a rigorous notion of a specification’s correctness as it relates to how the

system of contracts behaves when taken as a whole, and formal tools to reason about said correctness.

1.3 Meta Properties of Financial Smart Contracts

Our thesis is that we can mitigate costly vulnerabilities due to incorrect specifications by formally

specifying and verifying a contract’s meta properties—or properties which are intended by, but out of

scope of, a contract specification. To that end, we present formal tools targetting a contract’s economic

properties (Chapter 4), upgradeability (Chapter 5), and compositionality (Chapter 6).
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Chapter 2

Related Work

Here we survey previous work on formal verification of smart contracts with the goal of specifying and

verifying meta properties. We find that, generally speaking, those verification tools which in principle

are able to specify and verify meta properties are not able to do so on code which can be compiled and

deployed, and those verification tools which reason about code that can be compiled and deployed are

too low-level in scope to specify and verify the meta properties of interest here.

We are able to address this issue because we do our work in ConCert [10], a Coq-based verification

tool with verified extraction [11, 13]. Because ConCert has a full embedding of the execution semantics

of a blockchain in Coq, an interactive theorem prover [27], we are able to specify and verify arbitrary

properties of smart contracts. Because it features verified extraction, we are able to do so on code which

can be compiled and deployed.

2.1 Smart Contract Verification

We consider the landscape of formal verification with the goal of expressing and reasoning about meta

properties of smart contracts. We will draw on several surveys of formal verification of smart contracts,

including [17, 38, 45, 63, 97, 121, 131].

From among the plethora of tools available to formally verify smart contracts, we will mostly focus

on those which use interactive theorem provers, or proof assistants. Verification tools based on proof

assistants tend to use the proof assistant itself as a specification language, and so smart contracts are

treated as mathematical objects, about which any mathematical statement can be made. In principle, this

means that proof assistants can be used to verify any correct design [115]. As we will see, we use diverse

mathematical tools to formalize meta properties, so the flexibility and robustness of proof assistants come

particularly in handy. We also focus on proof assistants because they are recognized in the literature to

be of the highest quality for formal verification [97].
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2.1.1 Smart Contract Language Embeddings

Most verification tools which use proof assistants come in the form of an embedding of a smart contract

language into the proof assistant. Smart contracts in that embedded language are then reasoned about

through the embedding. We will survey these briefly, starting with embeddings of low-level languages

and moving to those of intermediate- and high-level languages.

There are several examples of low-level language embeddings into proof assistants. For EVM bytecode

alone we have embeddings in Isabelle [5, 74]; in Coq [139]; in the K Framework [73, 109]; in Why3

[143, 100]; and in Z3 [85]. There are similar embeddings for other smart contract languages, including for

the Tezos smart contract language Michelson, which is a low-level, stack-based language. These include

Mi-Cho-Coq, an embedding of Michelson into Coq [25]; K Michelson [81], an embedding of Michelson

into the K Framework; and WhyISon, which transpiles Michelson into WhyML, the programming and

specification language of the Why3 framework [42]. There are examples on other chains as well, including

an embedding of the low-level, Bitcoin-based contract language Simplicity in Coq [105].

Due to their proximity in language and semantics of the lowest-level executing environment to each of

these blockchains, low-level language embeddings are more likely to be faithful to the actual execution

environment [84]. Equally, this low-level proximity can make it difficult to correctly specify high-level

behavioral or economic properties of smart contracts without some form of abstraction.

On the other hand, higher-level languages tend to be more human-readable, and can be more straightfor-

ward to reason about [84], especially if they are statically typed functional programming languages [10].

Naively, this higher level of abstraction seems like it would make it more straightforward to reason about

the correctness of a specification. However, the abstraction can come at the cost of rigor. As they sit at

a higher level of abstraction, they require a rigorous language embedding as well as a correct compiler

down to the low-level, executable code which preserves the proven properties [84].

We have many examples of intermediate- and high-level languages which have been embedded into proof

assistants. For Ethereum smart contracts, we have Lolisa [138] and FEther [137], embeddings of Solidity

into Coq; as well as embeddings of Solidity into Event-B [147]; into Isabelle [84]; into the K Framework

[82]; and into F∗ [28]. We also have custom implementations of finite state machines used by FSolidM

[90, 91] and VeriSolid [92] that verify Solidity code. For Tezos, we have an embedding of Albert [26],

an intermediate-level language which compiles down to Michelson, and which targets Mi-Cho-Coq; we

also have ConCert [10], which has a certified extraction mechanism from Coq code into multiple smart

contract languages [11], including into CameLIGO, an intermediate-level language which compiles down

to Michelson [9]. On other chains we have Plutus in Agda [37], and verification for BNB in Coq [127].

At higher levels of abstraction, we also have some DSLs written in proof assistants which target various

smart contract languages. Scilla is intermediate-level, and can be used to reason about temporal properties

of smart contracts, which targets Solidity [118]. Archetype is a Tezos-based DSL which targets business
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logic and uses Why3 [24]. Multi is a framework, written in Coq, which targets reasoning about smart

contract interactions [36]. At an even higher level of abstraction, we have TLA+, a tool for reasoning

about concurrent and distributed systems, which was used to verify the a cross-chain swap protocol [101].

For our purposes the key advantage to verification with intermediate- and high-level languages is that the

abstraction makes it easier to write a correct specification, and reasoning about code also tends to be

more straightforward [84]. However, there are disadvantages. Many of these are DSLs that specialize to

target specific kinds of higher-level properties, such as a particular kind of business logic, and are thus

limited in their scope. Others are specialized to reason about specifications or protocols, unattached to

code which can be compiled and deployed, which then must be translated by hand down to a low-level

specification. Furthermore, language embeddings tend to either omit a formalization of the semantics of

the execution environment, or they make various assumptions which if inaccurate could systematically

introduce unverifiable vulnerabilities.

In order to be fully rigorous, our work requires an intermediate- or high-level language embedding, which

is unrestricted in the contracts it can write and properties it can specify, which includes an explicit model

of the execution semantics of a blockchain, and which has a verified mechanism to extract, compile, and

deploy code which has been reasoned about.

2.1.2 ConCert

We will use ConCert [10] to formally specify and verify meta properties for three reasons. Firstly, while

ConCert has not yet been used to formalize meta properties of smart contracts, it is extremely well-suited

to do so. The specification language is in Coq and so it is unrestricted, except by limitations of the

blockchain model itself, in the kinds of mathematical statements that can be made and proved about

smart contracts. It also formalizes blockchain execution semantics underlying the execution of a smart

contract, which means that there is a well-defined smart contract type, Contract, in the context of

the model, which has a specific semantics within the blockchain and which can thus be reasoned about

abstractly. This, to our knowledge, is unique to ConCert. As we will see throughout this thesis, the

combination of these characteristics allows us to reason unrestrictedly about smart contracts abstractly,

as mathematical objects, which is key to the goal of this thesis.

Finally, ConCert’s extraction mechanism from Coq into its target smart contract languages is certified, so

despite it not being a low-level language embedding like Mi-Cho-Coq, we have a high-fidelity translation

into code which can be compiled and deployed. This is made possible by MetaCoq [11, 12, 126], which

is a tool for reasoning about the extraction mechanism. It should be mentioned that we rely on the

compilers of the target languages to be correct, though compilers can be certified and so there is no

theoretical barrier which prevents ConCert’s certified extraction to extend to e.g. bytecode.

Thus ConCert gives us the advantages of verification at a higher level of abstraction without compromising

the integrity of the verification results.
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2.2 Verifying Meta Properties

Our work is set in the context of various types of contract vulnerabilities. While we argue for formally

specifying and verifying meta properties to address these issues, there are alternative methods that one

can take to address each of these classes of vulnerabilities. Rather than including a discussion of each of

these here, in each of Chapters 4, 5, and 6, we discuss related work in formal methods which is more

tailored to the particular class of vulnerability at hand.

24



Chapter 3

Background

Here we introduce the types and tactics of ConCert which are most relevant to the forthcoming work.

We first look at the type of smart contracts in ConCert, the Contract type, and at the types which

underlie the blockchain’s execution semantics. The latter abstracts the execution semantics at two levels:

the Environment type, and the ChainState type, each of which can be acted on, respectively, by the

Action and ChainStep types to model the progression of an executing blockchain.

We then discuss what contract specifications and proofs of contract invariants look like in ConCert,

covering ConCert’s central custom Coq tactic, contract induction. For any interested reader, the

codebase and thorough documentation can be found at the ConCert GitHub repository [35].

3.1 Smart Contracts in ConCert

In ConCert, smart contracts are abstracted as a pair of functions: the initialization function, init, which

governs how a contract initializes, and the receive function, receive, which governs how a contract

handles calls to its entrypoints.

1 Record Contract (Setup Msg State Error : Type) :=

2 build_contract {

3 init :

4 Chain -> ContractCallContext -> Setup ->

5 result State Error;

6 receive :

7 Chain -> ContractCallContext -> State -> option Msg ->

8 result (State * list ActionBody) Error;

9 }.

Listing 3.1: The type of smart contracts in ConCert is a record type with two functions: init, which

governs contract initialization, and receive, which governs contract calls.
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To understand how smart contracts are modeled, let us briefly look at the Chain, ContractCallContext,

Setup, State, Msg, Error, and ActionBody types. In brief,

• The Chain type carries data about the current state of the chain, such as the block height.

• The ContractCallContext type carries information about the context of a contract call, including

the transaction sender, the transaction origin, the contract’s balance, the amount of the native

token (e.g. ETH or XTZ) sent in the transaction.

• The Setup type indicates what information is needed to deploy a contract.

• The State type is a contract’s storage type.

• The Msg type is the type of messages a contract can receive.

• The Error type is the type of errors a contract can throw.

• Finally, the ActionBody type is ConCert’s type of actions which can be emitted by a contract.

In ConCert, then, to define a smart contract one must define the Setup, State, Msg, and Error types

and produce init and receive functions. As we will see, a call to a smart contract modifies the state of

the blockchain by updating the contract state with the receive function and emits transactions of type

ActionBody. If a call to a contract results in something of type Error, the execution rolls back and the

Environment remains unchanged.

To deal with Coq’s polymorphism, ConCert also features a serialized contract type WeakContract,

though anyone doing contract verification work in ConCert should not ever encounter the WeakContract

type explicitly. We will see the WeakContract type briefly in various definitions relevant to the chain’s

execution semantics later on. Note that, while we omitted it in Listing 3.1, because contracts need to be

serialized, all four types parameterizing a contract must be serializable.

1 Inductive WeakContract :=

2 | build_weak_contract

3 (init :

4 Chain ->

5 ContractCallContext ->

6 SerializedValue (* setup *) ->

7 result SerializedValue SerializedValue)

8 (receive :

9 Chain ->

10 ContractCallContext ->

11 SerializedValue (* state *) ->

12 option SerializedValue (* message *) ->

13 result (SerializedValue * list ActionBody) SerializedValue).

Listing 3.2: The WeakContract type is a serialization of the Contract type used interally to ConCert to

deal with contract polymorphism. It is defined coinductively with the ActionBody type.
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3.2 The Blockchain in ConCert

In ConCert, the blockchain and its execution semantics are modeled at multiple levels of abstraction,

which we go through here. Underlying everything is a typeclass, ChainBase, which represents basic

assumptions made of any blockchain. This is almost always abstracted away when reasoning about smart

contracts.

1 Class ChainBase :=

2 build_chain_base {

3 Address : Type;

4 address_eqb : Address -> Address -> bool;

5 address_eqb_spec :

6 forall (a b : Address), Bool.reflect (a = b) (address_eqb a b);

7 address_eqdec :> stdpp.base.EqDecision Address;

8 address_countable :> countable.Countable Address;

9 address_serializable :> Serializable Address;

10 address_is_contract : Address -> bool;

11 }.

12

Listing 3.3: The ChainBase typeclass, which represents basic assumptions made of any blockchain.

The basic assumptions of the ChainBase typeclass include an address type Address, which is countable

and has decidable equality, and which has a distinction between wallet address and contract addresses.

For example, on Tezos, this distinction can be seen in the format of the public keys, where contract

addresses are of the form KT... and wallet addresse are of the form tz....

At the next level of abstraction, we have the record type Chain, which represents the view of the

blockchain that a contract can access and interact with. The only information this type carries is the

chain height, the current slot of a given block, and the finalized height.

1 Record Chain :=

2 build_chain {

3 chain_height : nat;

4 current_slot : nat;

5 finalized_height : nat;

6 }.

Listing 3.4: The Chain type, which represents the view of the blockchain that a contract can access and

interact with.

From here, we have two types: the Environment type, which augments the Chain type to model the

information that a realistic blockchain needs to implement operations, and the ChainState type, which

augments the Environment type to include a queue of pending transactions that need to be executed.
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The Environment type includes data about account balances, which contracts are at which addresses,

and the states of deployed contracts.

1 Record Environment :=

2 build_env {

3 env_chain :> Chain;

4 env_account_balances : Address -> Amount;

5 env_contracts : Address -> option WeakContract;

6 env_contract_states : Address -> option SerializedValue;

7 }.

Listing 3.5: The Environment type augments the Chain type to model the information that a realistic

blockchain needs to implement operations.

The ChainState type augments the Environment type to add a queue of outstanding transactions,

shifting our view from the chain’s internal environment at any given block height to an external view of

the chain itself, which executes transactions in a block.

1 Record ChainState :=

2 build_chain_state {

3 chain_state_env :> Environment;

4 chain_state_queue : list Action;

5 }.

Listing 3.6: the ChainState type augments the Environment type to include a queue of pending

transactions that need to be executed.

Finally, we have ChainBuilderType, which is a typeclass representing implementations of blockchains.

Part of the trust base of ConCert, then, is that the blockchain in question satisfies the semantics of the

ChainBuilderType.

1 Class ChainBuilderType :=

2 build_builder {

3 builder_type : Type;

4 builder_initial : builder_type;

5 builder_env : builder_type -> Environment;

6 builder_add_block

7 (builder : builder_type)

8 (header : BlockHeader)

9 (actions : list Action) :

10 result builder_type AddBlockError;

11 builder_trace (builder : builder_type) :

12 ChainTrace empty_state (build_chain_state (builder_env builder) []);

13 }.

Listing 3.7: The ChainBUilderType typeclass characterizes implementations of blockchains.
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3.2.1 Blockchain Semantics in ConCert

The Environment and ChainState types can be acted on by actions which represent the blockchain

making progress by executing transactions in a block. Some of these can be initiated by users, and others

relate to the blockchain’s execution semantics. The possible actions that a user can initiate are modeled

by the Action and ActionBody types.

1 Record Action :=

2 build_act {

3 act_origin : Address;

4 act_from : Address;

5 act_body : ActionBody;

6 }.

Listing 3.8: The Action type, which includes the action’s origin, the sender, and the action’s body.

1 Inductive ActionBody :=

2 | act_transfer (to : Address) (amount : Amount)

3 | act_call (to : Address) (amount : Amount) (msg : SerializedValue)

4 | act_deploy (amount : Amount) (c : WeakContract) (setup : SerializedValue).

Listing 3.9: The ActionBody type, which specifies that a user can interact with the blockchain by

transferring funds, calling a contract, or deploying a contract.

Every action carries with it the origin, act origin, the sender, act from, and what kind of action it is,

whether it be a transfer, a contract call, or a contract deployment. From these we can build the types

which act on the Environment and ChainState types to model the blockchain making progress.

First, let us look at the ActionEvaluation type, which acts on the Environment type. The definition

of ActionEvaluation involves sixty-six lines of code, so we give a shortened version here.

1 Inductive ActionEvaluation

2 (prev_env : Environment) (act : Action)

3 (new_env : Environment) (new_acts : list Action) : Type :=

4 | eval_transfer :

5 forall (origin from_addr to_addr : Address)

6 (amount : Amount),

7 (* some omitted checks *)

8 ActionEvaluation prev_env act new_env new_acts

9 | eval_deploy :

10 forall (origin from_addr to_addr : Address)

11 (amount : Amount)

12 (wc : WeakContract)

13 (setup : SerializedValue)

14 (state : SerializedValue),

15 (* some omitted checks *)

16 ActionEvaluation prev_env act new_env new_acts

17 | eval_call :
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18 forall (origin from_addr to_addr : Address)

19 (amount : Amount)

20 (wc : WeakContract)

21 (msg : option SerializedValue)

22 (prev_state : SerializedValue)

23 (new_state : SerializedValue)

24 (resp_acts : list ActionBody),

25 (* some omitted checks *)

26 ActionEvaluation prev_env act new_env new_acts.

Listing 3.10: The ActionEvaluation links two inhabitants of the Environment type to represent a

blockchain making progress by evaluating an action.

The ActionEvaluation type is parameterized by a previous environment prev env, and action act, a

new environment new env, and a list of actions new acts. This models a blockchain making progress by

evaluating an action, moving from the previous environment to a new environment.

Moving up to the ChainState type, we have the ChainStep type which acts on ChainState similar to

how ActionEvaluation acts on Environment, forming a chain. As before, we give a shortened version

of the type definition.

1 Inductive ChainStep (prev_bstate : ChainState) (next_bstate : ChainState) :=

2 | step_block :

3 forall (header : BlockHeader),

4 (* some omitted checks *)

5 ChainStep prev_bstate next_bstate

6 | step_action :

7 forall (act : Action)

8 (acts : list Action)

9 (new_acts : list Action),

10 ActionEvaluation prev_bstate act next_bstate new_acts ->

11 (* some omitted checks *)

12 ChainStep prev_bstate next_bstate

13 | step_action_invalid :

14 forall (act : Action)

15 (acts : list Action),

16 (* some omitted checks *)

17 ChainStep prev_bstate next_bstate

18 | step_permute :

19 EnvironmentEquiv next_bstate prev_bstate ->

20 Permutation (chain_state_queue prev_bstate) (chain_state_queue next_bstate) ->

21 ChainStep prev_bstate next_bstate.

Listing 3.11: The ChainStep type links two inhabitants of the ChainState type to represent a blockchain

making progress.
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The ChainStep type is parameterized by two chain states, the previous state prev bstate, and the new

state, next bstate, and represents an update to the chain’s state. The chain’s state can be updated by:

updating the environment with an inhabitant of an ActionEvaluation type, as given by step action;

adding a block, given by step block; showing an action to be invalid, given by setp action invalid;

or reordering the blockchain’s transaction queue. Reordering the transaction queue is for the sake of

generality, so that proofs are independent of depth-first or breadth-first transaction execution orderings,

which can vary among chains.

Finally, the actual chained history of a blockchain is modeled through the ChainTrace type, which is a

linked list of inhabitants of ChainState, linked by inhabitants of ChainStep.

1 Definition ChainTrace := ChainedList ChainState ChainStep.

Listing 3.12: The ChainTrace type, which models the chained history of a blockchain, and can be used

to define the notion of a reachable chain state.

The ChainedList type models the chaining of points in some arbitrary type by a type of links, as follows.

1 Context {Point : Type} {Link : Point -> Point -> Type}.

2 Inductive ChainedList : Point -> Point -> Type :=

3 | clnil : forall {p}, ChainedList p p

4 | snoc : forall {from mid to},

5 ChainedList from mid -> Link mid to -> ChainedList from to.

Listing 3.13: The ChainedList type, described in the ConCert documentation as a proof-relevant

transitive reflexive closure of a relation.

As we will see, the semantics of blockchain execution makes it possible for us to reason along execution

traces of blockchains in a general way. In particular, the ChainTrace type gives us the notion of a

reachable state of a blockchain, defined as a state to which there is a trace from the empty state,

empty state.

1 Definition reachable (state : ChainState) : Prop :=

2 inhabited (ChainTrace empty_state state).

Listing 3.14: The definition of a reachable state of a blockchain.

Many proofs of contract invariants begin by assuming a reachable chain state.

3.3 Specification and Proof in ConCert

A contract specification is simply a list of propositions, written in Coq, about a smart contract. For

practical verification work, a specification typically references a specific smart contract. However, there is

nothing stopping us from abstracting over smart contracts, which we will do in later chapters.
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For now, let us look at a simple example of contract definition and specification. The contract in question

will simply be a counter contract, which can increment and decrement a counter held in storage. We

start by defining the Setup, Msg, State, and Error types.

1 Definition Setup := unit.

2

3 Inductive Msg :=

4 | incr (n : N)

5 | decr (n : N).

6

7 Record State :=

8 build_state { stor : Z }.

9

10 Definition Error : Type := N.

Listing 3.15: The counter contract’s four types Setup, Msg, State, and Error.

We then define the entrypoint contracts and the contract’s main functionality.

1 (* entrypoint functions *)

2 Definition incr_funct (n : N) (st : State) :=

3 {| stor := st.(stor) + (Z.of_N n) |}.

4 Definition decr_funct (n : N) (st : State) :=

5 {| stor := st.(stor) - (Z.of_N n) |}.

6

7 (* main contract functionality *)

8 Definition counter_funct (st : State) (msg : Msg) : option State :=

9 match msg with

10 | incr n => Some (incr_funct n st)

11 | decr n => Some (decr_funct n st)

12 end.

Listing 3.16: The counter contract’s main functionality.

Finally, we can construct an inhabitant of Contract by defining init and receive functions.

1 Definition counter_init

2 (_ : Chain)

3 (_ : ContractCallContext)

4 (_ : Setup) :

5 option State :=

6 Some ({| stor := 0 |}).

7

8 Definition counter_recv

9 (_ : Chain)

10 (_ : ContractCallContext)

11 (st : State)

12 (op_msg : option Msg) :

13 option (State * list ActionBody) :=
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14 match op_msg with

15 | Some msg =>

16 match counter_funct st msg with

17 | Some rslt => Some (rslt, [])

18 | None => None

19 end

20 | None => None

21 end.

22

23 Definition counter_contract : Contract Setup Msg State Error :=

24 build_contract counter_init counter_recv.

Listing 3.17: An inhabitant of the Contract type, defined by the init and receive functions.

Now that we have our contract counter contract defined, we can prove invariants about it.

For example, we may wish to verify the property that at any given blockchain state, the value of stor in

the state of counter contract will equal the sum of the incr calls, minus the sum of the decr calls. In

ConCert, we would write that statement like this:

1 Theorem counter_correct : forall bstate caddr (trace : ChainTrace empty_state bstate),

2 env_contracts caddr = Some (counter_contract : WeakContract) ->

3 exists cstate inc_calls,

4 contract_state bstate caddr = Some cstate /\

5 incoming_calls entrypoint trace caddr = Some inc_calls ->

6 (let sum_incr :=

7 sumN get_incr_qty inc_calls in

8 let sum_decr :=

9 sumN get_decr_qty inc_calls in

10 cstate.(stor) = sum_incr - sum_decr).

Listing 3.18: An invariant on counter contract, which says the state of the counter is always the sum

of all the incr calls minus the sum of the decr calls.

The theorem uses two functions, get incr qty and get decr qty, whose definitions we omit here but

which extract from an incoming call the quantity to be incremented or decremented. Translating this

theorem into prose, we would say something like:

Theorem 1 (counter correct). For all blockchain states bstate, contract addresses caddr, and

chain traces trace from the genesis block to bstate, such that caddr is the contract address of

counter contract, there exists a contract state cstate and incoming calls inc calls, such that cstate

is the state of counter contract at bstate, and inc calls is all the incoming calls found in trace,

such that: the value of stor in cstate is the sum of all the values of calls to the incr entrypoint, minus

the sum of all the values of calls to the decr entrypoint.

Shortened from there, this theorem states that at any reachable state, the value of stor in the storage of

counter contract is the sum of all the incr calls minus the sum of all the decr calls.
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3.4 Contract Induction

An invariant like counter correct is typically proved by a custom ConCert tactic contract induction.

As its name suggests, to prove an invariant by contract induction one proves it for a base case, contract

deployment, and then for the inductive step, which consists of the various ways a blockchain can make

progress.

The contract induction tactic divides the proof of a contract invariant into seven subgoals. In the first

six subgoals, one must (re)establish the invariant after:

1. deployment of the contract (the base case),

2. addition of a block,

3. an outgoing action,

4. a nonrecursive call,

5. a recursive call, and

6. permutation of the action queue.

Finally, in each of these steps, one can introduce facts about the contract to help with the proof. These

must be proved in the seventh subgoal.
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Chapter 4

A Contract’s Economic Properties

The first class of meta properties that we target are the economic properties of financial smart contracts.

As we saw in §1.2.1, poorly specified financial smart contracts can be vulnerable to costly economic

attacks. In this chapter we rigorously develop the notion of correctness of the specification of a financial

smart contract from the perspective of its economic properties.

To this end, we introduce a theoretical tool called a metaspecification, which is a specification of a

specification, and which we will use throughout this thesis to specify and verify meta properties of

financial smart contracts. In this chapter, we use it to verify that a contract specification adequately

captures the economic properties which were the intent of its design. We illustrate with an example

financial smart contract, called a structured pool, but the framework we introduce can be applied generally.

We proceed as follows. In §4.1, we discuss the problem of specifying financial smart contracts with

economic intent. In §4.2, we specify the structured pool contract, introducing the economic problem it

seeks to solve and mathematically proving that it addresses the problem. In §4.3, we formally introduce

the notion of a metaspecification and discuss its relationship to the specification. In §4.4, we formalize

the structured pool specification, treating it as an axiomatization of a contract, and separating the

specification from the properties of the metaspecification. In §4.5, we formalize the structured pool

metaspecification, formally proving that any contract conforming to the formalized specification exhibits

the desirable properties given in §4.2. In §4.6 we conclude.

4.1 Contract Specification With Economic Intent

By definition, financial smart contracts are always specified with some economic intent, and that is

manifest with varying degrees of rigor in the specification process.

The least rigorous of these communicate the contract’s intended economic design through rhetorical
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means such as diagrams, analogies, and imagery. Let us revisit Beanstalk, an Ethereum-based stablecoin

protocol which was the victim of a 77 million USD attack in April 2022 [54]. Consider in particular the

Beanstalk white paper [111]. Beanstalk is a complex protocol with many moving parts. Reading the

white paper, one gets an intuitive notion for what each component of the protocol contributes to the

stablecoin and its tokenomics through analogies to farming. The components of the protocol are referred

to by a farm, the sun, silos, fields, barns, fertilizer, temperature, and humidity. There are stalks and

seeds, which can be revitalized and fertilized. Finally, assets are referred to as ripe or unripe, and can be

chopped. All of this imagery combines into that of a functioning farm, which gives an intuitive sense that

the application design is correct in some sense. However, while each of the protocol components have a

precise definition and technical notation, there is no codified, precise goal, and certainly no proofs that

the definitions work together efficaciously.

Financial smart contracts which are specified with more rigor tend to define their goal in economic terms,

and reason about how well their design satisfies those goals. Consider, for example, FairMM [40], an

AMM designed to mitigate front-running attacks. It is specified with precise, mathematical definitions,

and features proofs that the specification satisfies certain economic properties. Theorem 3, the main

theorem which justifies the specification to be correct, shows that no rational, profit-seeking market maker

has incentive to manipulate the price in advance of a trade. In principle, this addresses the problem of

front-running; the reader might convince himself of this fact by reading the definition of a front-running

attack in the paper’s abstract.

This leads us to a critical question. Proving theorems about a specification is undoubtedly an important

step towards rigor, and indeed to ensuring that the specification captures certain economic meta properties.

But how do we choose which theorems to prove?

In practice, there are various ways to answer this question. We can think of FairMM’s strategy as having

defined a threat model, which is a common practice to evaluate software design [132]. Threat models can

be designed systematically [89], and if they characterize the problem accurately then they can be useful

in preventing vulnerabilities. The properties one proves in response to a threat model are those which, in

the context of the model, are sufficient to neutralize or mitigate risk.

Another strategy is to explore the implications of a specification using tools like mutation and unit

testing, and from there formulate propositions to be proved true of the specification. For example,

Phipathananunth’s recent work uses mutation testing to identify any pathological, yet correct, behavior

of a specification, and from these tests derive and verify various safety properties [110]. Similarly,

the developers of Djed [140], a formally verified stablecoin, used mutation and unit testing to identify

potentially pathological behavior of the specification and then targeted these behaviors with formal

verification to justify the robustness of the contract specification. The method of using tools like unit

and mutation testing is agnostic to any theory or model, but rather helps discover properties which, on

their face, are evidently undesirable. They can be used in conjunction with a threat model or some other

theory to discover where the model or theory breaks down.
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In any case, the theorems one proves about a specification point to some fundamental notion of correct

design, and the properties one chooses to prove should be oriented toward that notion of correctness. Thus

the more one is able to couch theorems of correctness in a systematic understanding of the surrounding

execution environment, corresponding threats, and economic goals of the contract, the more accurately

one is able to approximate and prove correctness of a specification’s design.

In this spirit, substantial work has been done by Angeris et al. [6, 7], Bartoletti et al. [19, 20], and Xu

et al. [136] to systematically understand market behavior of AMMs like Uniswap, and to create formal

theories of DeFi and AMMs from which the properties constituting desirable behavior can be thoroughly

reasoned through and derived. These studies range from highly theoretical to data-driven, and are a good

start at a comprehensive understanding of the economic environment in which financial smart contracts

operate.

In the coming sections, we will specify a novel smart contract designed to pool and trade tokenized carbon

credits. We do so in the context of the cited studies and theories, and from them derive properties of

well-behaved AMMs and other DeFi applications. While the context from which these properties are

derived—the studies and formal models on which we draw—can always be improved, we argue that this

is an example of rigorous contract design and specification, as there is a clear notion of correctness which

is couched in substantial theoretical and practical work on the behavior of financial smart contracts.

4.2 Case Study: Structured Pools

We now move on to specify a financial smart contract, called a structured pool, which is designed to

address issues of fungibility in blockchain-based carbon markets [125]. We will proceed by defining the

economic problem that structured pools aim to solve (§4.2.1), specifying the contract (§4.2.2), and then

justifying that the specification meets our economic goals (§4.2.3). Importantly, the theorems that we

prove about structured pools are derived from the previously-mentioned work on theories of AMMs and

DeFi [6, 7, 19, 20, 136].

Our goal will then be to formally verify this contract design in §4.4 and §4.5. We will show that the

process of rigorous contract specification splits naturally into two components: the contract specification,

which is a formal definition and axiomatization of the contract, and the metaspecification, which is a

formal tool for reasoning about the implications and properties of the specification. Both are essential to

ensure a contract’s correctness in the formal setting.

4.2.1 The Issue of Fungibility in Tokenized Carbon Credits

Tokenized carbon credits, which are of growing relevance to voluntary carbon markets [46, 48, 122], have

unique metadata and are typically tokenized as non-fungible tokens (NFTs). However, this can lead to
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low liquidity and high price volatility, so there is a push within the industry to make carbon credits as

fungible as possible [49, 104, 124].

The current solution is to pool carbon credits which have similar features, such as a specific vintage or

crediting methodology, and to value each pooled token equally within the pool [124]. Unfortunately, from

a valuation perspective this discards the differences in constituent credits.

For example, Toucan, perhaps the most prominent provider of tokenized carbon credits [122], tokenizes

carbon credits from the Verra registry as NFTs on Polygon [133]. Each NFT can then be fractionalized

as an ERC20 token using a TCO2 token contract. Distinct TCO2 contracts are not mutually fungible

because they carry the metadata of the carbon credit they fractionalize.

To achieve mutual fungibility, Toucan launched the Base Carbon Tonne (BCT) and the Nature Carbon

Tonne (NCT) pools. Any TCO2 token which satisfies the acceptance criteria of one of these pools can be

pooled, one-for-one, in exchange for BCT or NCT tokens, respectively. While these pools do increase

token fungibility, they do so at the cost of valuing individual metadata.

Our goal then is to increase liquidity without ignoring individual token metadata, and we do so by

removing the required one-for-one exchange rate. To that end we define a novel pooling mechanism,

called a structured pool, which pools carbon credits without ignoring their differences by valuing pooled

tokens relative to each other and facilitating trades between them. Thus our contract should act both as

a pooling contract as well as an AMM, and any relevant properties of correctness should reflect that fact.

We now proceed to specify a structured pool contract.

4.2.2 Structured Pools

A structured pool contract has at least three entrypoints: DEPOSIT, WITHDRAW, and TRADE. The first two,

DEPOSIT and WITHDRAW, are for pooling and unpooling constituent tokens, respectively, in exchange for

a pool token. The exchange rate from a particular tokenized carbon credit to the pool token is called

the pooling exchange rate, and is set individually for each carbon credit which can be pooled. These are

also the entrypoints for, respectively, depositing and withdrawing liquidity used for trades, which are

executed via the TRADE entrypoint. Each of these entrypoints is governed by equations which price trades

and update the pooling exchange rates, which will see shortly.

The contract’s storage must keep track of the family of tokens which can be pooled, each of which is

called a constituent token, along with the pooling exchange rate of each token in the family. Each pooling

exchange rate is assumed to be strictly positive when the contract is deployed. It must also keep track of

the contract’s balance of each constituent token, the address of the pool token contract, and the total

number of outstanding pool tokens.
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A brief comment on notation. We refer to our family of constituent tokens as T , where a token tx in the

family is described by its token data, which is a contract address and token ID pair. We will typically

discuss trades from, e.g. tx to ty, where ∆x refers to the quantity traded in, ∆y refers to the quantity

traded out, and x and y refer, respectively, to the quantity of each token held by the contract. We also

write rx as the pooling exchange rate in storage for token tx.

Deposits

The DEPOSIT entrypoint accepts the token data of some tx from the token family and a quantity q of

tokens in tx to be deposited. The pool contract checks that tx is in the token family. It then transfers q

tokens of tx to itself, wich is done by calling the transfer entrypoint of the token tx, which is a standard

entrypoint of token contracts. It simultaneously mints q ∗ rx pool tokens and transfers them to the

sender’s wallet. This transaction is atomic, meaning that if any of the TRANSFER or MINT operations fail,

the entire transaction fails.

Withdrawals

The WITHDRAW entrypoint accepts token data of some tx from the token family and a quantity q of pool

tokens the user wishes to burn in exchange for tokens in tx. The pool contract checks that tx is in the

token family, and checks that it has sufficient tokens in tx to execute the withdrawal transaction. The

pool contract then transfers q pool tokens from the sender to itself and burns them by calling the BURN

entrypoint, a standard entrypoint of token contracts. It simultaneously transfers q
rx

tokens in tx from

itself to the sender’s wallet. As before, the transaction is atomic, so if any of the TRANSFER or BURN

operations fail, the entire transaction fails.

Trades

The TRADE entrypoint takes the token data of some token tx in T to be traded in, the token data of some

token ty in T to be traded out, and the quantity ∆x to be traded. It checks that both tx and ty are in

the token family, that k > 0, and that ∆x > 0. It calculates ∆y using formulae we will give below, and

checks that it has a sufficient balance y in ty to execute the trade action. Then in an atomic transaction,

the contract updates the exchange rate rx in response to the trade, transfers ∆x of tokens tx from the

sender’s wallet to itself, and transfers ∆y of tokens ty from itself to the sender’s wallet. The specification

is summarized in Figure 4.1.

The contract prices trades by simulating trading along the curve xy = k (for some generic x and y),

where k is the total number of outstanding pool tokens. A trade of ∆x yields ∆y tokens such that the

following equation holds:

(x+∆x)(y −∆y) = k, (4.1)
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1 (* two auxiliary functions *)
2 fn CALCULATE_TRADE r_x r_y delta_x k =
3 let l = sqrt(k / (r_x r_y)) ;
4 l * r_x - k / (l * r_y + delta_x) ;
5

6 fn UPDATE_RATE x delta_x delta_y r_x r_y =
7 (r_x x + r_y * delta_y)/(x + delta_x);
8

9 (* pseudocode of the TRADE entrypoint *)
10 fn TRADE t_x t_y delta_x =
11 let delta_y = CALCULATE_TRADE
12 r_x r_y delta_x k ;
13 if (is_in_family t_x) &&
14 (is_in_family t_y) &&
15 (delta_x > 0) &&
16 (k > 0) &&
17 (self_balance t_y >= delta_y)
18 then
19 <atomic>
20 r_x <- UPDATE_RATE
21 x delta_x delta_y r_x r_y;
22 transfer (delta_x)
23 of (t_x)
24 from (sender)
25 to (self) ;
26 transfer (delta_y)
27 of (t_y)
28 from (self)
29 to (sender) ;
30 </atomic>
31 else
32 fail ;

Figure 4.1: Pseudocode of the TRADE entrypoint function.

giving

∆y = y − k

x+∆x
. (4.2)

This is how trades are priced in the wild for liquidity pools of fungible tokens [7]. We call ps =
∆y

∆x
the

swap price.

An important consequence to (4.1) is that the smaller ∆x is compared to k, the closer the exchange

happens at a rate of pq = y
x . This is because the derivative of xy = k, or f(x) = k

x , is

f ′(x) =
−k

x2
=

−y

x
,

and the smaller ∆x is relative to k, the more accurately the tangent line at some (x0, y0) approximates

the convex curve xy = k. We call pq = y
x the quoted price.

The difference pq − ps is called the price slippage [136, §3.2.4]. It is important to note that ps is always

less than pq because pq is calculated by moving ∆x along the tangent line from a starting point (x0, y0)

representing the current state of the contract’s funds available for trading, and ps is calculated by moving

∆x along xy = k. Since xy = k is convex, moving ∆x along the tangent line always results in a larger ∆y

than moving along xy = k. See Figure 4.2 for a graphical illustration, where ∆q
y is the output of a trade

priced at pq and ∆s
y is the output of a trade priced at ps.
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Figure 4.2: A trade of ∆x = 3 for ∆q
y and ∆s

y, respectively, at k = 50. ∆q
y = pq∆x is the trade priced at

the quoted price pq and ∆s
y = ps∆x is the trade priced at the swap price ps.

In particular, this means that

∆s
y < pq∆x (4.3)

always holds, since ∆s
y = ps∆x. This fact is crucial to the mechanics of how structured pools update

relative prices in response to trading activity.

We use the pooling exchange rates to inform quoted prices between tokens, and then simulate trades

along the curve xy = k (for some generic x and y). If the token tx pools at a rate of rx, meaning rx is the

value of tx in terms of pool tokens, and the token ty pools at a rate of ry, then tx can be valued relative

to ty at a rate of

rx,y :=
rx
ry

. (4.4)

It is perhaps counterintuitive that rx is in the numerator and not the denominator of rx,y, considering

that pq = y
x in the generic case, but this is due to the fact that rx indicates pool tokens per tx, and we

want rx,y to indicate ty valued in terms of tx.

To price a trade we begin by finding ℓ such that

(ℓry)(ℓrx) = k,

where k is the total number of outstanding pool tokens in the contract’s storage. The trade then yields

∆s
y tokens such that

(ℓry +∆x)(ℓrx −∆s
y) = k. (4.5)

This formula yields the quoted price of this trade as

pq =
ℓrx
ℓry

=
rx
ry

= rx,y, (4.6)
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as desired. The swap price, then, is

ps =
∆s

y

∆x
(4.7)

where

∆s
y = ℓrx − k

ℓry +∆x
. (4.8)

For the rest of this document, we will write ∆s
y simply as ∆y unless explicitly stated otherwise.

After executing a trade, if we do not adjust pooling exchange rates, the pool token is now overcollateralized.

We can see this because by (4.3),

ry∆y < rx∆x,

so a trade deposits slightly more in terms of pool tokens (rx∆x) than it removes (ry∆y). Thus the sum

of the value of all the constituent tokens at their current valuation is now greater than the total number

of outstanding pool tokens.

To avoid this, we adjust the values of the constituent tokens so that their sum at the new valuation is

equal to the total number of outstanding pool tokens. In a trade tx to ty, because it is possible to deplete

ty from the pool, we cannot reliably regain pooled consistency by adjusting the value of the token being

traded for in the pool. We know, however, that we have a supply of tx because that was the deposited

token. Thus to regain pooled consistency, we have to slightly devalue tx in relation to the rest of the pool

tokens. To do so, we divide the quantity of pool tokens by its collateral in tx to get an updated exchange

rate r′x as follows:

r′x :=
rxx+ ry∆y

x+∆x
. (4.9)

Equation (4.9) updates the pooling exchange rate of tx so that the pool token is neither under- nor

over-collateralized.

Consider as an example a pool with three constituent tokens tx, ty, and tz, and pooling exchange rates

rx = 2, ry = 1, and rz = 1. That is, tx is valued at two pool tokens for one token, and each of ty and tz

are valued at one pool token for one token. Suppose we have 10 tx, 15 ty, and 15 tz pooled, thus having

20 + 15 + 15 = 50 outstanding pool tokens.

Now suppose that we trade 1 tx for slightly less than 2 ty (the quoted price would be exactly 2). Using our

formulae, ℓ =
√

50
2 = 5 and ∆y ≈ 1.67 (slippage is high because of the small amount of liquidity). Post

trade, we have in our pool 11 tx, 13.33 ty, and 15 tz, giving us in the pool the equivalent in constituent

tokens as

2 ∗ 11 + 1 ∗ 13.33 + 1 ∗ 15 = 50.33

pool tokens with our unadjusted pooling exchange rates. To rectify this, bringing the pool back down to

the value of 50 pool tokens, we slightly devalue tx relative to the other tokens in the pool. We use the

formula (4.9)

r′x =
#pool tokens

#tokens of tx
=

rxx+ ry∆y

x+∆x
≈ 1.97,
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which adjusts rx so that the 11 tx are now worth about 21.67 pool tokens instead of 22. This gives us our

desired

1.97 ∗ 11 + 1 ∗ 13.33 + 1 ∗ 15 = 50.

After this update, ty is valued more in relation to tx, which makes sense because tx was sold to buy ty.

One ty used to be worth half of tx, and now it is valued at

ry
r′x

≈ 0.508.

We need to make sure that the relative price of ty didn’t rise so much that if we trade back for tx, we

have more in tx than we started with. If this were the case, we would have an opportunity for arbitrage

within the structured pool, something we wish to avoid. The quoted price for trading our roughly 1.67 ty

back to tx would give us about 0.508 ∗ 1.67 ≈ 0.848, which is less than 1, as desired.

We end this section with a note that in these calculations, we implicitly assumed exchange rates rx to be

rational numbers by which we can multiply and divide freely so long as rx > 0. Of course, implementations

will include rounding error, and so we add to the specification that the UPDATE RATE function return a

positive number if the numerator and denominator of the quotient are positive. We also specify that

the CALCULATE TRADE function return a positive number if k, rx, ry, and ∆x are positive, and that

∆y < rx
ry
∆x always be true for successful trades.

4.2.3 Properties of Structured Pools

The structured pool contract is designed to imitate AMMs in how it prices trades and updates the pooling

exchange rates. While AMMs such as Uniswap have been shown to exhibit desirable economic behaviors

[7], it is not immediately obvious that the structured pool contract will do the same. To that end, we

draw on work by Angeris et al. [6, 7], Bartoletti et al. [19, 20], and Xu et al. [136] on AMMs and DeFi,

from which we derive six properties indicative of desirable market behavior from game-theoretic and

economic perspectives. For each of the six properties, we give an informal definition, followed by a formal

proposition and proof.

Demand Sensitivity

A trade for a given token increases its price relative to other constituent tokens, so that higher relative

demand corresponds to a higher relative price. Likewise, trading one token in for another decreases the

first’s relative price in the pool, corresponding to slackened demand. This enforces the classical notion of

supply and demand and is important to the proper functioning of an AMM, as we see in [20, §4.2].

Property 1 (Demand Sensitivity). Let tx and ty be tokens in our family with nonzero pooled liquidity

and exchange rates rx, ry > 0. In a trade tx to ty, as rx is updated to r′x, it decereases relative to rz for

43



all z ̸= x, and ry strictly increases relative to rx.

Proof. First we prove that r′x < rx. We must prove:

r′x =
rxx+ ry∆y

x+∆x
<

rxx+ rx∆x

x+∆x
=

rx(x+∆x)

x+∆x
= rx,

which holds if ry∆y < rx∆x. By (4.3) and (4.6):

∆y <
rx
ry

∆x = pq∆x,

so ry∆y < rx∆x as desired. By the specification, rz remains constant for all tz ̸= tx under TRADE, so as

rx is updated to r′x it decreases relative to rz. That ry strictly increases relative to rx is due to the fact

that r′x < rx and ry stays constant.

Nonpathological prices

As relative prices shift through trades, a price that starts out nonzero never goes to zero or to a negative

value. This is to avoid pathological behavior of zero or negative prices, and is true for standard AMMs like

Uniswap [7, §2]. However, like most AMMs, prices can still get arbitrarily close to zero, so a constituent

token which loses its value due to external factors can still become arbitrarily devalued within the pool.

This is an important property so that the formulae which price trades never divide by zero.

Property 2 (Nonpathological Prices). For a token tx in T , if there is a contract state such that rx > 0,

then rx > 0 holds for all future states of the contract.

Proof. We only need to show that rx > 0 implies r′x > 0, since TRADE is the only entrypoint that updates

exchange rates. Consider a contract state such that rx > 0, and an incoming trade from tx to some ty of

quantity ∆x > 0. Because ∆y is calcluated such that

(ℓry +∆x)(ℓrx −∆y) = k,

and since rx, ry, and ∆x are all positive, we know that ∆y is positive so long as k is not zero. If k is

zero, the transaction fails as we specified for the TRADE entrypoint, so we know that ∆y > 0. Since

ry∆y < rx∆x and x cannot be negative we have that

0 < ry∆y < rx∆x < rx(x+∆x),

rendering the numerator of r′x,

rxx+ ry∆y,
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always positive. Since ∆x is positive and x cannot be negative, the denominator of r′x,

x+∆x,

is also positive, which gives our result. Our result holds, then, so long as the UPDATE RATE function return

a positive number if the numerator and denominator of the quotient are positive, which we specified for

the TRADE entrypoint.

Swap Rate Consistency

For a token tx in T and for any ∆x > 0, there is no sequence of trades, beginning and ending with tx,

such that ∆′
x > ∆x, where ∆′

x is the output quantity of the sequence of trades. Swap rate consistency

means that it is never profitable to trade in a loop, e.g. tx to ty, and back to tx, which is important so

that there are never any opportunities for arbitrage internal to the pool. This is similar to the assertion

that trading cost be positive [7, §2], that trading from tx to ty, and back to tx not be profitable in [6, §3,

§4.1].

Property 3 (Swap Rate Consistency). Let tx be a token in our family with nonzero pooled liquidity and

rx > 0. Then for any ∆x > 0 there is no sequence of trades, beginning and ending with tx, such that

∆′
x > ∆x, where ∆′

x is the output quantity of the sequence of trades.

Proof. Consider tokens tx, ty, and tz with nonzero liquidity and with rx, ry, rz > 0. First, we claim that

the following inequality holds for all x ≥ 0 and all trades from tx to ty:

ry∆y ≤ r′x∆x. (4.10)

Since

r′x =
rxx+ ry∆y

x+∆x
, (4.9)

(4.10) simplifies to

ry∆y(x+∆x) ≤ ∆x(rxx+ ry∆y),

which in turn simplifies to

ry∆yx ≤ rx∆xx.

Since we know that ry∆y ≤ rx∆x from (4.3), we can see that our inequality holds for all x ≥ 0, as desired.

Now we consider sequences of trades beginning and ending with tx. For a trade tx to tx, we have our

result because

∆′
x <

rx
rx

∆x = ∆x

by (4.3). Now consider a trading loop from tx to ty, and back to tx, for ty ̸= tx. We have our result if we
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can show
ry
r′x

∆y ≤ ∆x

is satisfied, because
ry
r′x
∆y is an upper bound on the quantity that ∆y can be traded for as ps < pq. This,

of course, is given by (4.10) and the fact that r′x > 0 from Property 2.

Finally, consider a trade from tx to ty, to tz, and back to tx. Similar to before we need to show that

rz
r′x

∆z ≤ ∆x

is satisfied. But we have from (4.10) that

rz∆z ≤ r′y∆y ≤ ry∆y ≤ r′x∆x,

as desired. This proof can be easily seen to apply to trading loops of arbitrary length, which proves our

result.

Zero-Impact Liquidity Change

The quoted price of trades is unaffected by depositing or withdrawing liquidity [136, §3.3.1]. Typically, for

AMMs such as Uniswap [3] or Curve [2] this is implemented by requiring that liquidity providers provide

liquidity in pairs such that the quoted price of the AMM does not change by depositing or withdrawing

liquidity. Liquidity provision works differently for structured pools, but depositing or withdrawing liquidity

still does not impact quoted prices.

Property 4 (Zero-Impact Liquidity Change). The quoted price of trades is unaffected by calling DEPOSIT

and WITHDRAW.

Proof. We have this result because the quoted price depends only on the pooling exchange rates, as we

saw in (4.4), and as per the specification, only the TRADE entrypoint alters pooling exchange rates.

Arbitrage sensitivity

If an external, demand-sensitive market prices a constituent token differently from the structured pool, a

sufficiently large arbitrage transaction will equalize the prices of the external market and the structured

pool, or deplete the pool. In our case, this happens because prices adapt through trades due to demand

sensitivity or the pool depletes in that particular token. This is generally considered to be an important

property so that prices adjust in line with supply and demand, see [20, §4.3] and [7].

Property 5 (Arbitrage sensitivity). Let tx be a token in our family with nonzero pooled liquidity and

rx > 0. If an external, demand-sensitive market prices tx differently from the structured pool, then
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assuming sufficient liquidity, with a sufficiently large transaction either the price of tx in the structured

pool converges with the external market, or the trade depletes the pool of tx.

Proof. Suppose the structured pool prices a constituent token tx higher than an external market. Then

an arbitrageur can buy tx elsewhere and sell them into the structured pool. Doing so devalues tx relative

to the other tokens, as we have shown. Recall that 0 < r′x < rx, so to prove our result we just need to

show that 0 is the greatest lower bound of r′x. Note that by definition, ∆y = ∆s
y, so substituting (4.8)

∆s
y = ℓrx − k

ℓry +∆x
,

r′x =
rxx+ ry∆y

x+∆x
=

rxx+ ℓrxry − ryk
ℓry+∆x

x+∆x
.

Then

r′x <
rxx+ ℓrxry
x+∆x

and since x, rx, ry, and ℓ are constants for a trade, for any r, 0 < r < rx, by choosing a sufficiently large

∆x we can make r′x < r. Thus assuming sufficient external liquidity, we have our result.

Now suppose the structured pool prices a constituent token tx lower than an external market. Then an

arbitrageur can buy tx from the structured pool and sell them elsewhere. Doing so does not change rx,

as per the specification. However, the external market is demand sensitive, so the price of tx will decrease

on that market. Then we know that after a trade of ∆x = x, either the external market now prices tx

lower than the structured pools contract, meaning there was some

∆′
x < ∆x

which gives our result, or the trade depletes the pool of tx, giving our result.

Pooled Consistency

The number of outstanding pool tokens is equal to the value, in pool tokens, of all constituent tokens

held by the contract. Mathematically, the sum of all the constituent, pooled tokens, multiplied by their

value in terms of pooled tokens, always equals the total number of outstanding pool tokens. This means

that the pool token is never under- or over-collateralized, and is similar to standard AMMs, where the

LP token is always fully backed, representing a percentage of the liquidity pool, and is encoded in the

literature as preservation of net worth [20, §3].

Property 6 (Pooled Consistency). The following equation always holds:

∑
tx

rxx = k (4.11)
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Proof. As a base case, by the specification, at the time of contract deployment k = 0 and we have no

pooled liquidity, so (4.11) holds trivially because x = 0 for all tx. For our inductive step, consider a

contract state for which (4.11) holds. If we call DEPOSIT, (4.11) holds by definition because for a deposit

of dx of tx, we mint rxdx pool tokens. The same is true if we call WITHDRAW. Finally, if we call TRADE

from tokens tx to ty, then there is an excess number of tokens in tx, violating (4.11). This excess is

quantified in (4.9) and remedied by adjusting rx to r′x as we saw before.

4.3 Specification and Metaspecification

The contents of the previous section show us that a correct specification has two components. The first is

the contract specification, an axiomatization of the contract which defines the minimal structure needed

for a contract implementation to be considered, in this case, a structured pool contract. The second is

the metaspecification, which consists of properties that justify the specification to be correct. It proves

theorems about an arbitrary contract satisfying that specification, which themselves are derived from

some broader theory or understanding of the execution context.

These two components are complementary, but separate. The specification should be minimal, since

in practice we wish to impose as few constraints as possible on the implementation of any given smart

contract and minimize any verification work needed to prove the contract correct. Conversely, the

metaspecification should be as comprehensive as possible in order to understand all the properties and

behaviors associated with the specification that we possibly can.

In what follows, we formalize the contract specification in ConCert as a predicate on contracts (§4.4), and

then formalize the metaspecification as a list of properties which can be proved by assuming a contract

that conforms to the specification into the context (§4.5). As we will see, the metaspecification informs

the specification, and vice versa, not only in the design of the specification but also in its formalization.

4.4 Formal Specification: A Contract Axiomatization

The formulation of a formal specification is not generally treated systematically in formal verification.

Most formal verification is done on specific implementations of contracts, proving an instance of an

informal specification. The specification is typically formalized ad hoc and not abstracted as a standalone,

formal object. In particular, this means that there is no obvious way to reason abstractly and formally

about one or various contracts which conform to a given specification.

We wish to be more systematic. We propose a generic reasoning technique which formalizes a specification

as a predicate on smart contracts, axiomatizing that contract in a formal, mathematical way. Using

ConCert, we formalize the specification of a structured pool contract [125], introducing a predicate on
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the contract type.

is structured pool : forall (C : Contract Setup Msg State Error), Prop.

The predicate is a conjunction of each formal property of the specification. It delineates formally what it

means to be a structured pool contract, and allows us to reason about the specification’s consequences by

assuming some contract C and a proof (is sp : is structured pool C). We will describe the formal

properties of the specification here, and summarize them at the end of the section in Table 4.1.

4.4.1 The Structured Pool Formal Specification

We now outline the formal specification of structured pools. Recall from Chapter 3 that in ConCert, a

smart contract is a record type of two functions: init, which describes how the contract initializes, and

receive, which gives the semantics of a call to a contract entrypoint. Contracts are also parameterized

by four types: Setup, the type to initialize, Msg, the entrypoint type, State, the storage type, and Error,

the error type.

To formalize a contract specification, we first introduce typeclasses which characterize the contract types.

We then specify how the contract must initialize. Finally, we specify contract calls by individually

specifying each entrypoint.

4.4.2 Typeclasses to Characterize Contract Types

Of the four contract types, here we will look at the specification of State, the storage type, and Msg,

the entrypoint type, of the structured pool contract. The formalized typeclasses of the remaining two

contract types can be found in Appendix A.1.1.

First, the storage type. The informal specification states that the contract storage must contain:

• the exchange rates for each constituent token,

• the quantity of constituent tokens held in the pool,

• the address of the pool token, and

• the number of outstanding pool tokens.

We can specify this by using a typeclass, which simply requires that the storage type T of a structured

pool contract have functions which reveal each of these data points.

• stor rates : T -> FMap token exchange rate

• stor tokens held : T -> FMap token N
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• stor pool token : T -> token

• stor outstanding tokens : T -> N

1 Class State_Spec (T : Type) :=

2 build_state_spec {

3 (* the exchange rates *)

4 stor_rates : T -> FMap token exchange_rate ;

5 (* token balances *)

6 stor_tokens_held : T -> FMap token N ;

7 (* pool token data *)

8 stor_pool_token : T -> token ;

9 (* number of outstanding pool tokens *)

10 stor_outstanding_tokens : T -> N ;

11 }.

Listing 4.1: The typeclass characterizing the storage type of a structured pool contract.

Moving on, consider Msg, the entrypoint type. There must be at least three entrypoints: POOL, UNPOOL,

and TRADE. Our specification first identifies the minimal amount of information needed to call each of

these entrypoints by defining three types:

• pool data, the payload type for the POOL entrypoint,

• unpool data, the payload type for the UNPOOL entrypoint, and

• trade data, the payload type for the TRADE entrypoint.

We then specify that the entrypoint type have at least three (but possibly more) entrypoints by a typeclass

which requires the following functions into the entrypoint type T:

• pool : pool data -> T

• unpool : unpool data -> T

• trade : trade data -> T

• other : other entrypoint -> option T

The function other, going from some generic type other entrypoint to option T, allows an imple-

mentation of the structured pool contract to optionally contain more entrypoints than the required

three.
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1 Class Msg_Spec (T : Type) :=

2 build_msg_spec {

3 pool : pool_data -> T ;

4 unpool : unpool_data -> T ;

5 trade : trade_data -> T ;

6 (* any other potential entrypoints *)

7 other : other_entrypoint -> option T ;

8 }.

Listing 4.2: The typeclass characterizing the entrypoint type of a structured pool contract.

When reasoning about a contract in ConCert, one must be able to reason about all entrypoints. Since we

allow optionally for more than three entrypoints via the Msg Spec typeclass, we need to include in the

specification a stipulation that for any type T satisfying Msg Spec, all inhabitants of T must be able to be

written in terms of these four functions. That is, for any m:T, m is either:

• pool p, for some p,

• unpool u, for some u,

• trade t, for some t, or

• Some m equals other o, for some o.

In particular, this allows us to mimic induction over an arbitrary inhabitant of the message type, despite

that type not being explicitly defined as an inductive type. We do so by formally encoding the following

proposition into the contract specification:

Proposition 1. For all m:Msg, one of the following holds:

1. m = pool p, for some p

2. m = unpool u, for some u

3. m = trade t, for some t

4. Some m = other o, for some o.

1 Definition msg_destruct (contract:Contract Setup Msg State Error) :=

2 forall (m : Msg),

3 (exists p, m = pool p) \/

4 (exists u, m = unpool u) \/

5 (exists t, m = trade t) \/

6 (exists o, Some m = other o).

Listing 4.3: The formalization of Proposition 1, which is used to destruct inhabitants of the entrypoint

type.
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See Appendix A.1.1 for the formalized typeclasses characterizing Setup, the setup type, and Error, the

error type.

4.4.3 Specifying Contract Initialization

We now specify the structured pool contract’s init function, which governs how it initializes.

A structured pool contract must initialize with positive exchange rates, with no pooled tokens, and with

no outstanding pool tokens. We encode each of these notions in three properties of the specification,

formalized virtually identically to the informal statements made in the informal specification. They are

as follows.

1. initialized with positive rates,

2. initialized with zero balance, and

3. initialized with zero outstanding

Since rates are encoded in a map from tokens to exchange rates as we saw in 4.4.2, the first of these,

initialized with positive rates, stipulates that for all initialized contract states cstate, a rate r cor-

responding to a token t must satisfy r > 0. The second, initialized with zero balance, gives us that

the balance of any token t in storage initializes to 0. The third, initialized with zero outstanding,

stipulates that at the time of initialization, there be no outstanding pool tokens.

This covers what is explicitly mentioned in the informal specification, but also specifies that the data

given in the Setup type is the same data used to initialize the rates and set the data for the pool token.

4.4.4 Specifying Each Contract Entrypoint

There are twenty-four properties of the full entrypoint specification, encoded as propositions. We will

look at a few key properties here. For the full list of propositions, see Table 4.1.

Firstly, let us look at the specification of the POOL and UNPOOL entrypoints. One proposition in the

specification of the POOL entrypoint is pool increases tokens held, which specifies that when a token

is pooled via a successful call to the POOL entrypoint, the balance of tokens held in the pool goes up in

that token and the balance of all other tokens stays constant. This is given by the following proposition,

formalized.

Proposition 2. Consider a contract contract. Suppose that for some contract state cstate, chain,

and contract call context, the POOL entrypoint of contract is called successfully with some payload

msg payload. Then in the updated contract state cstate’, the balance of the token pooled, given in the
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map (stor tokens held cstate’), is greater than its balance in the previous state, given in the map

(stor tokens held cstate). The difference between the two is precisely the quantity pooled, and the

balance for all other tokens stays constant between the two states.

1 Definition pool_increases_tokens_held

2 (contract : Contract Setup Msg State Error) : Prop :=

3 forall cstate chain ctx msg_payload cstate’ acts,

4 (* If the call to POOL was successful, *)

5 receive contract chain ctx cstate (Some (pool msg_payload)) =

6 Ok(cstate’, acts) ->

7 (* then in the new state cstate’, tokens_held has

8 increased at the token pooled *)

9 let token := msg_payload.(token_pooled) in

10 let qty := msg_payload.(qty_pooled) in

11 let old_bal := get_bal token (stor_tokens_held cstate) in

12 let new_bal := get_bal token (stor_tokens_held cstate’) in

13 new_bal = old_bal + qty /\

14 (* and tokens_held stays the same for all other tokens. *)

15 forall t,

16 t <> token ->

17 get_bal t (stor_tokens_held cstate) =

18 get_bal t (stor_tokens_held cstate’).

Listing 4.4: The formalization of Proposition 2, which describes pre- and post-conditions of calling the

POOL entrypoint.

The POOL and UNPOOL entrypoints are fully characterized as entrypoints by a set of propositions of a

similar form to this one. These propositions describe what happens when tokens are (un)pooled, what

transactions are emitted from those entrypoint calls, and how the storage gets updated.

Moving on to the specification of the TRADE entrypoint, we introduce two auxiliary functions: calc delta y,

which calculates the output of a trade, typically written ∆y in the literature, and calc rx’, which calcu-

lates how exchange rates (and by implication, prices) update in response to trading activity. Structured

pool contracts simulate trading along a convex curve, the most common of these being the Uniswap V1

curve xy = k (see Figure 4.2).

Rather than require one implementation or curve, we simply specify that whatever functions are present

in the implementation conform to a few requirements true of trades along any convex curve. Since in

structured pools, the quoted price of any trade from a token tx to a token ty is given by the quotient of

their rates
rx
ry

,

we require that the pricing and slippage (the difference between the quoted price of a trade and the price

at which the trade is executed) of any implementation of calc delta y mimic the pricing and slippage
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we get by trading along xy = k. For structured pools, this translates to a technical requirement that

ry∆y ≤ rx∆x

for all trades from tx to ty of quantity ∆x, where rx is the exchange rate of tx and ry is the exchange

rate of ty. To express this in the specification, we formalize the following proposition.

Proposition 3. Consider tokens tx and ty, with exchange rates rx and ry (resp.) and pooled balances x

and y (resp.). For all trades from tx to ty of quantity ∆x, the following inequality holds, where ∆y is the

quantity traded out which is calculated by calc delta y:

ry∆y ≤ rx∆x.

1 Definition trade_slippage :=

2 forall r_x r_y delta_x k x,

3 let delta_y := calc_delta_y r_x r_y delta_x k x in

4 r_y * delta_y <= r_x * delta_x.

Listing 4.5: The formalization of Proposition 3, which characterizes trade slippage.

We don’t require any particular implementation of calc delta y, so long as it conforms to Proposition 3

(as well as the other relevant propositions of the specification).

Also included in the specification is a proposition that trades are calculated using the function calc delta y,

formalized as follows.

Proposition 4. Consider a contract contract. Suppose that for some contract state cstate, chain,

and contract call context, the TRADE entrypoint is successfully called with some payload msg payload,

where delta x is the quantity traded in. Then for the updated state cstate’:

1. The balance of the token traded in increases by delta x from the previous state cstate to the

updated state cstate’, and

2. The balance of the token traded out decreases by delta y from the previous state cstate to the

updated state cstate’, where delta y is the quantity calculated by calc delta y.

1 Definition trade_pricing

2 (contract : Contract Setup Msg State Error) : Prop :=

3 forall cstate chain ctx msg_payload cstate’ acts,

4 (* the call to TRADE was successful *)

5 receive contract chain ctx cstate (Some (trade (msg_payload))) =

6 Ok(cstate’, acts) ->

7 (* balances for t_x change appropriately *)

8 FMap.find (token_in_trade msg_payload) (stor_tokens_held cstate’) =

9 Some (get_bal (token_in_trade msg_payload)
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10 (stor_tokens_held cstate) + (qty_trade msg_payload)) /\

11 (* balances for t_y change appropriately *)

12 let t_x := token_in_trade msg_payload in

13 let t_y := token_out_trade msg_payload in

14 let delta_x := qty_trade msg_payload in

15 let rate_in := (get_rate t_x (stor_rates cstate)) in

16 let rate_out := (get_rate t_y (stor_rates cstate)) in

17 let k := (stor_outstanding_tokens cstate) in

18 let x := get_bal t_x (stor_tokens_held cstate) in

19 (* in the new state *)

20 FMap.find(token_out_trade msg_payload)(stor_tokens_held cstate’)=

21 Some (get_bal(token_out_trade msg_payload)(stor_tokens_held cstate)

22 - (calc_delta_y rate_in rate_out delta_x k x)).

Listing 4.6: The formalization of Proposition 4, which requires that trades be priced with the function

calc delta y.

The TRADE entrypoint is fully characterized as an entrypoint by a set of propositions similar to this one.

These describe what happens when tokens are traded, what transactions are emitted from that entrypoint

call, and how the storage updates.

Finally, to finish specifying the entrypoints we need to specify required behavior of any other entrypoint

aside from POOL, UNPOOL, or TRADE. We simply specify that calling any other entrypoints does not affect

exchange rates, token balances, or the outstanding tokens when called.

Proposition 5. Consider a contract contract. Suppose that for some contract state cstate, chain,

and contract call context, any entrypoint other than POOL, UNPOOL, or TRADE is successfully called with

payload o. Then for the updated state cstate’ the following hold:

1. the exchange rates remain constant, meaning

(stor rates cstate) = (stor rates cstate’)

2. the token balances remain constant, meaning

(stor tokens held cstate) = (stor tokens held cstate’)

3. the number of outstanding tokens remains constant, meaning

(stor outstanding tokens cstate) = (stor outstanding tokens cstate’).
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Propositions of the Specifica-
tion

Summary

Preconditions none fails, msg destruct A contract call
fails if the message
payload is empty,
and the message
type must have at
least the three en-
trypoints specified.

Specification of POOL pool entrypoint check

pool emits txns

pool increases tokens held

pool rates unchanged

pool outstanding

Calling POOL emits
the correct transac-
tions and alters stor-
age correctly, and
fails if someone at-
tempts to pool a
nonexistent token.

Specification of UNPOOL unpool entrypoint check

unpool entrypoint check 2

unpool emits txns

unpool decreases tokens held

unpool rates unchanged

unpool outstanding

Calling UNPOOL

emits the correct
transactions and
alters storage cor-
rectly, and fails if
someone attempts
to unpool a nonex-
istent token.

Specification of TRADE trade entrypoint check

trade entrypoint check 2

trade pricing formula

trade update rates

trade update rates formula

trade emits transfers

trade tokens held update

trade outstanding update

trade pricing

trade amounts nonnegative

Calling TRADE

emits the correct
transactions and
updates the storage
correctly; it prices
trades and updates
rates correctly; and
it fails if someone
attempts to trade a
nonexistent token
or a token with
insufficient contract
balance.

Specification of OTHER other rates unchanged

other balances unchanged

other outstanding unchanged

Any other entry-
point must not al-
ter exchange rates,
token balances, or
outstanding pool to-
kens.

calc delta y and calc rx’ rate decrease, rates balance,
rates balance 2,
trade slippage,
trade slippage 2, arbitrage lt,
arbitrage gt

Axiomatizes trad-
ing along a convex
curve.

Contract Initialization initialized with positive rates

initialized with zero balance

initialized with zero outstanding

initialized with init rates

initialized with pool token

The contract initial-
izes with positive
rates, zero pooled
balance, zero pool
tokens outstanding,
and using the initial-
ization data.

Table 4.1: The propositions which constitute the formal specification of a structured pool contract.
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1 Definition other_outstanding_unchanged

2 (contract : Contract Setup Msg State Error) : Prop :=

3 forall cstate cstate’ chain ctx o acts,

4 (* the call to POOL was successful *)

5 receive contract chain ctx cstate (other o)

6 = Ok(cstate’, acts) ->

7 (* balances all stay the same *)

8 (stor_outstanding_tokens cstate) =

9 (stor_outstanding_tokens cstate’).

Listing 4.7: The formalization of Item 1 of Proposition 5, which requires that the number of outstanding

tokens remain constant through a successful call to any entrypoint other than POOL, UNPOOL, or TRADE.

4.4.5 The Formal Specification as a Predicate on Contracts

Taken together, these propositions and typeclasses are the axiomatized definition of a structured pool

contract, and we can reason about the specification if we assume the existence of some contract

contract : Contract Setup Msg State Error

such that each of Setup, Msg, State, and Error conform to their respective typeclasses Setup Spec,

Msg Spec, State Spec, and Error Spec, and such that contract conforms to each of the properties

defined in the specification.

To do so, we amalgamate all the properties into a predicate on contracts, which is a function

is structured pool : forall (C : Contract Seetup Msg State Error), Prop.

See Table 4.1 for a summary. The full, formal statement of the is structured pool predicate can be

found in Appendix A.1.3.

4.5 Formal Metaspecification

We now turn to give a formal treatment of the structured pool metaspecification. As we saw in §4.2.3, a

metaspecification is critical to be sure that our specification is correct in the context of some underlying

theory. Thus if we wish to formally verify a contract to be correct, we must verify its formal specification

to also be correct. The formalization here has the same economic implications of correctness as we saw in

the unformalized metaspecification of §4.2.3, but as we will see in the formal setting it has additional

advantages that help us prove the formalization of the specification to be correct.

In particular, the reader may recall that the unformalized specification of §4.2.2 uses rational-number

arithmetic in the properties of the specification and in the statements and proofs of these six properties
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of the metaspecification. Using rationals or reals is common, especially with financial contracts like

AMMs or lending pools, e.g. [18, 20]. However, we have the issue that smart contracts typically use only

natural-number arithmetic, and so we need some way of ensuring that the transition from rational to

natural-number arithmetic does not compromise the economic properties the contract is meant to satisfy.

4.5.1 Formalizing the Metaspecification

We begin by introducing an arbitrary structured pool contract into our Coq context, formalized as follows.

1 Context { contract : Contract Setup Msg State Error }

2 { is_sp : is_structured_pool contract }.

Listing 4.8: Introduce into the context an arbitrary contract contract which conforms to the structured

pools specification.

We have formalized and proved all six of these properties in ConCert (see Appendix A.2), but will focus

our discussion on those properties which illustrate how the formalization of the metaspecification helps

to derive properties of the specification necessary for a safe transition from rational to natural-number

arithmetic.

First, consider Demand Sensitivity (Property 1), which is the property that an individual token’s exchange

rates decrease relative to other tokens with slackened demand, and increase with rising demand.

Property 1 (Demand Sensitivity). Let tx and ty be tokens in our family with nonzero pooled liquidity

and exchange rates rx, ry > 0. In a trade tx to ty, as rx is updated to r′x, it decereases relative to rz for

all z ̸= x, and ry strictly increases relative to rx.

We write the formalized theorem first in prose, and then give the formalized Coq code.

Theorem 1 (Demand Sensitivity, Formalized). Consider a structured pool contract contract with state

cstate. Furthermore, consider tokens t x and t y, rates r x and r y, and quantities x and y, where

t x is a token with nonzero pooled liquidity x and with rate r x > 0, and t y is a token with nonzero

pooled liquidity y and with rate r y > 0. In a trade t x to t y (a successful call to the contract’s TRADE

entrypoint from t x to t y with t x <> t y), as r x is updated to r x’:

1. r x decreases relative to all rates r z, for t z <> t x, and

2. r y strictly increases relative to r x.
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1 Theorem demand_sensitivity cstate :

2 (* For all tokens t_x t_y, rates r_x r_y, and

3 quantities x and y, where *)

4 forall t_x r_x x t_y r_y y,

5 (* t_x is a token with nonzero pooled liquidity and

6 with rate r_x > 0, and *)

7 FMap.find t_x (stor_tokens_held cstate) = Some x /\ x > 0 /\

8 FMap.find t_x (stor_rates cstate) = Some r_x /\ r_x > 0 ->

9 (* t_y is a token with nonzero pooled liquidity and

10 with rate r_y > 0 *)

11 FMap.find t_y (stor_tokens_held cstate) = Some y /\ y > 0 /\

12 FMap.find t_y (stor_rates cstate) = Some r_y /\ r_y > 0 ->

13 (* In a trade t_x to t_y ... *)

14 forall chain ctx msg msg_payload acts cstate’,

15 (* i.e.: a successful call to the contract *)

16 receive contract chain ctx cstate (Some msg) =

17 Ok(cstate’, acts) ->

18 (* which is a trade *)

19 msg = trade msg_payload ->

20 (* from t_x to t_y *)

21 msg_payload.(token_in_trade) = t_x ->

22 msg_payload.(token_out_trade) = t_y ->

23 (* with t_x <> t_y *)

24 t_x <> t_y ->

25 (* ... as r_x is updated to r_x’: ... *)

26 let r_x’ := get_rate t_x (stor_rates cstate’) in

27 (* (1) r_x decreases relative to all rates r_z,

28 for t_z <> t_x, and *)

29 (forall t_z,

30 t_z <> t_x ->

31 let r_z := get_rate t_z (stor_rates cstate) in

32 let r_z’ := get_rate t_z (stor_rates cstate’) in

33 rel_decr r_x r_z r_x’ r_z’) /\

34 (* (2) r_y strictly increases relative to r_x *)

35 let t_y := msg_payload.(token_out_trade) in

36 let r_y := get_rate t_y (stor_rates cstate) in

37 let r_y’ := get_rate t_y (stor_rates cstate’) in

38 rel_incr r_y r_x r_y’ r_x’.

Listing 4.9: Theorem 1, the formalized statement of Demand Sensitivity (Property 1).
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To see the first issue in the transition from rational to natural-number arithmetic, note first that the

unformalized version of Demand Sensitivity (Property 1) uses a notion of “relative increase” and “relative

decrease,” which can be understood easily in mathematical terms, but which needs to be encoded

somehow formally. These two notions of natural numbers are defined by the following functions, used

in the formalization in Listing 4.9. They state that as variables x, y, and z change to x′, y′, and z′

respectively, x increases relative to y if y − x ≤ y′ − x′, and x decreases relative to z if z − x ≤ z′ − x′

(see Listing 4.10).

1 Definition rel_incr (y x y’ x’ : N) :=
2 ((Z.of_N y) - (Z.of_N x) <= (Z.of_N y’) - (Z.of_N x’))%Z.
3

4 Definition rel_decr (x z x’ z’ : N) :=
5 ((Z.of_N z) - (Z.of_N x) <= (Z.of_N z’) - (Z.of_N x’))%Z.

Listing 4.10: The formal notion of relative increase and decrease betwen natural numbers.

The careful reader will notice that Property 1 states that the relative decrease is strict: For an exchange

rate rx updated to r′x, r
′
x < rx. In contrast, the inequality in Theorem 1 is not strict: r x’ <= r x. This

is because the informal specification uses rational arithmetic in all calculations, but in smart contracts do

arithmetic with natural numbers. Thus if r x’ < r x, meaning the rate update is strict for all trades,

then after a finite number of trades the rate r x could update to 0, contradicting Nonpathological Prices

(Property 2).

Let us look at the formalization of Pooled Consistency (Property 6), which states that the total value of

pooled tokens, calculated in terms of pool tokens, is always the same as the total number of outstanding

pool tokens.

Property 6 (Pooled Consistency). The following equation always holds:

∑
tx

rxx = k

In what follows, the function tokens to values helps to formalize the sum in Property 6 by taking all

tokens with a nontrivial exchange rate and multiplies the contract’s pooled balance in that token by its

exchange rate. We then fold over this list to take the sum in the formal statement.

Theorem 6 (Pooled Consistency, Formalized). Consider a structured pool contract contract with state

cstate. Then the the sum of all the constituent, pooled tokens, multiplied by their value in terms of

pooled tokens, always equals the total number of outstanding pool tokens.
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1 Theorem pooled_consistency bstate caddr :

2 (* Consider a reachable bstate, with contract deployed at caddr ... *)

3 reachable bstate ->

4 env_contracts bstate caddr = Some (contract : WeakContract) ->

5 exists (cstate : State),

6 (* ... with state cstate. *)

7 contract_state bstate caddr = Some cstate /\

8 (* Then the sum over all tokens of rates * (qty held) equals

9 the total number of outstanding tokens. *)

10 suml (tokens_to_values

11 (stor_rates cstate)

12 (stor_tokens_held cstate)) =

13 (stor_outstanding_tokens cstate).

Listing 4.11: The formalization of Property 6, which requires that the sum of all the constituent, pooled

tokens, multiplied by their value in terms of pooled tokens, always equals the total number of outstanding

pool tokens.

1 Definition tokens_to_values

2 (rates : FMap token exchange_rate)

3 (tokens_held : FMap token N) : list N :=

4 List.map

5 (fun k =>

6 let rate := get_rate k rates in

7 let qty_held := get_bal k tokens_held in

8 rate * qty_held)

9 (FMap.keys rates).

Listing 4.12: The tokens to values function which produces a list of token balances multiplied by their

exchange rates.

From the formal proof of Pooled Consistency (Theorem 6) we derived the property rates balance, which

stipulates that the calculations for pooling and unpooling have to be inverses. That is, if one pools tokens

and then unpools the output of that transaction, they should end up with the same amount of tokens

as they started with. This is an implicit property of the informal specification because it uses rational

exchange rates and their inverses to pool and unpool tokens.

Aside from Pooled Consistency, two other formal proofs helped characterize the change from rational

to natural-number arithmetic. The formal proof of Swap Rate Consistency (Property 3) showed that

another strict inequality had to be relaxed from the informal specification. The formal proof of Arbitrage

Sensitivity (Property 5) showed that prices must be able to range in the open interval (0,∞). This is

a property of trading along a convex curve, and is encoded as arbitrage lt and arbitrage gt in the

formal specification.

Formalizing the metaspecification also forced us to define the invariants on all entrypoints other than

POOL, UNPOOL, or TRADE that we saw in §4.4.4. Specifically, these are Nonpathological Prices (Property 2)
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and Pooled Consistency (Property 6), the results which required reasoning about arbitrary contract calls.

Like other financial contract specifications we saw earlier [145, 40], the structured pool specification is

designed to be minimal and explicitly leaves out other entrypoints. Now, because of the metaspecification,

we have a specification that includes arbitrary entrypoints aside from the three explicitly specified.

4.5.2 Discussion

The complexity and nuance of proving these six results is an indaction of how nontrivial the problem of

correct economic specification is.

We can observe a few notable benefits of having formalized the metaspecification.

1. The formalization made it clear which properties of rational arithmetic must continue to hold

for an implementation using natural-number arithmetic so that key economic behaviors of the

specified contract remain intact. Specifically, these are the conditions such that Demand Sensitivity

(Property 1), Swap Rate Consistency (Property 3), Arbitrage Sensitivity (Property 5), and Pooled

Consistency (Property 6) hold, which are the properties of calc delta y and calc rx’ we see in

Table 4.1. Because every instance of rational or natural-number arithmetic in the specification is

designed to satisfy the economic properties of the metaspecification, these are only discoverable

through the formal metaspecification.

2. Similarly, by formalizing the metaspecification we discovered assumptions about the specified and

unspecified entrypoints that were implicit to the informal specification but not obvious. Now, the

specification is fully precise and unambiguous, and justified to be correct by the metaspecification.

Think back to the costly attacks on BeanStalk and Mango Markets from §1.2.1. The formalization

presented here shows that reasoning about a specification’s economic properties, including the pathological

contract behavior exploited by the attackers, is highly nontrivial. The fact that virtually all contracts

are specified and deployed, only reasoning informally at best about a specification’s economic properties,

points to the potential source of many of these vulnerabilities.

Furthermore, economic bugs can be subtle. We just saw that three of the properties of the metaspec-

ification—designed to prevent pathological economic behavior—would not hold if the transition from

rational to natural-number arithmetic wasn’t done correctly. Furthermore, the conditions for a correct

transition were nontrivial and discovered only by verifying the specification correct with regards to the

metaspecification.

62



4.6 Conclusion

The goal of this chapter was to formally develop the notion of correctness of a specification of a financial

smart contract from the perspective of its economic properties. We argued that rigorous specification

of any financial smart contract, because it must have economic intent, must be defined using precise

definitions and accompanied by theorems which prove it to be correct. Furthermore, these theorems should

be couched in substantial theoretical and practical work on the behavior of financial smart contracts.

This gave rise naturally to the separation of a contract specification from its metaspecification. A

metaspecification is a specification of a specification, and consists of properties which prove the specification

to be correct within the context of a theory. It does so by proving that any contract conforming to the

specification exhibits properties which characterize correct economic behavior.

Introducing the specification and metaspecification into the formal setting required defining a predicate

on smart contracts, which is the contract specification, and then formally reasoning about an arbitrary

contract which has a proof of the predicate corresponding to the specification. This allowed us to keep

the specification as concise as possible so as to minimize the work required to formally verify a contract

to be correct with regards to the specification, while still inheriting all the desirable economic behavior

proved about in the metaspecification.

Finally, we showed that the metaspecification not only improves the rigor of the specification itself in

terms of its ability to successfully capture economic meta properties, but also to prove the formalization

itself to be correct. As there are always choices that have to be made when both designing and formalizing

a contract specification, the metaspecification can help ensure that pathological contract behavior is not

introduced because of a poorly formed or formalized specification.

We conclude with a note that the theories from which we derived the properties of our metaspecification

[6, 7, 19, 20, 136] were not themselves formalized, which meant that the properties of the metaspecification

were derived from the theories by hand and not formally. Future work on this topic could include

formalizing said theories and using them to rigorously and systematically derive properties of financial

contracts metaspecifications.
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Chapter 5

Contract Upgradeability

The meta properties that we target in this chapter are upgradeability properties of financial smart

contracts. As we saw in §1.2.2, poorly specified contract upgrades can introduce costly vulnerabilities. In

this chapter we rigorously develop the notion of correctness of a specification of both individual contract

upgrades, as well as contract upgradeability, articulating meta properties as properties of one contract in

relation to those of another.

To this end, we introduce a theoretical tool called a contract morphism, which is a formal mechanism

to structurally relate smart contracts in ConCert. We show how morphisms can be used in proof and

specification, targeting upgradeable contracts in particular, and how they can be used to mathematically

characterize the bounds of a contract’s upgradeability.

This chapter is organized as follows. In §5.1, we motivate contract morphisms by discussing the problem

of formally specifying and verifying contract upgrades. In §5.2, we introduce contract morphisms. In

§5.3, we show how contract morphisms can be used with ConCert’s contract induction tactic. In §5.4,

we discuss strategies in proof and specification using contract morphisms. In §5.5 we mathematically

characterize contract upgrades using contract morphisms. In §5.6 we conclude. Each section contains

various code snippets; Appendix B mirrors section headings and gives a more complete version of the

code from which the snippets are taken.

5.1 Contract Upgrades

Like the economic properties of a contract specification, contract upgradeability involves complex contract

behavior which can be difficult to specify correctly. Blockchains do not generally feature built-in methods

for upgrading a smart contract once it has been deployed. Instead, if one wishes to upgrade a smart

contract, one has to encode an upgradeability framework into the contract before deployment. As we saw

in §1.2.2, this is hard to do well and can result in costly bugs.
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The alternative to encoding upgradeability into a smart contract is to upgrade via a hard fork. This

involves deploying a new contract and convincing users to migrate to the new one, for example with each

of the Uniswap upgrades [4, 70]. Especially for financial smart contracts such as AMMs which rely on

liquidity providers, this transition can be expensive and difficult.

It is perhaps an indication of the complexity of deploying safe, upgradeable contracts that many financial

smart contracts use hard forks. Best practices [142, 106] and established upgrade frameworks [95, 141] are

not enough to prevent vulnerabilities. Like the economic properties of Chapter 4, contract upgradeability

features nontrivial meta properties, so writing a correct specification is also nontrivial.

5.1.1 Specifying Upgradeability: The Diamond Framework

For example, consider the EIP-2535 Diamond upgrade framework [95], which is a specification of a

popular, generic, and flexible upgrade protocol for Ethereum smart contracts. The specification describes

contract storage and entrypoints, defining a system of contracts that all interact with each other. Reading

the specification, one can convince one’s self that it does in fact specify an upgradeable contract. However,

there is no property of the specification which precisely characterizes what it means to be upgradeable,

much less how upgradeable or mutable this defined structure is.

Rather than giving a precise notion of upgradeability, the intuition behind what it means to be upgradeable,

including the bounds of a contract’s upgradeability, are communicated in the Diamond framework through

pictures, diagrams, the motivation section of the specification, and the analogy of a diamond in naming

conventions for different parts of the specification. Each of these are rhetorical tools to communicate

what it means to be “upgradeable” but they are not mathematically or technically rigorous. In particular,

if we were to formally verify this standard, we would have no independent, mathematical notion to verify

the claim that this is, indeed, upgradeable in some precise sense.

Thus, just as with the economic properties implied by a specification that we saw in Chapter 4, we see

that the specification of an upgradeable contract tries to target some notion of upgradeability which we

can understand inuitively; however, whether or not the specification succeeds in doing so is a matter of

intuition at best. If we can articulate a precise notion of upgradeability, then we can verify a contract

specification correct with regards to a metaspecification that includes these upgradeability properties.

How then do we mathematically capture the notion of upgradeability? We will approach the problem

as follows. An upgradeable contract is made up of two constituent parts: the part governing contract

upgrades, which is a skeleton that remains constant no matter the state of the contract, and the part

corresponding to a specific contract version, which can change through upgrades. We might describe the

logic governing upgrades as a contract in its own right, a metacontract of sorts which governs the data

and versioning of the upgradeable contract. The contract version corresponding to any given state is one

of many possibilites, which we might describe with a family of contracts which parameterizes all possible

forms the upgradeable contract can take.

66



We will make this fully precise using contract morphisms, giving a formal decomposition of an upgradeable

smart contract into a base contract—its immutable part—and a family of version contracts—its mutable

part. The base contract contains the upgradeability framework, and the family of version contracts

contains the contract functionality which can be upgraded.

5.1.2 Evolving Specifications Through Upgrades

Another aspect which merits our attention is that upgrading a contract, whether by hard fork or through

built-in upgradeability, involves specifying the new contract version. How do we know the specification of

the new contract accurately reflects what we wish to happen in the upgrade?

Consider a contract upgrade from the perspective of a formal specification. Generally speaking, we

upgrade with a goal which relates to the previous contract version, whether it be to patch a bug, add

functionality, or improve contract features. Indeed, the new specification likely relates to the old: the

new should eliminate a vulnerability of the old, be backwards compatible while adding functionality to

the old, or make improvements on the old, for example to be more gas-efficient.

The actual intention of the upgrade, and therefore its specification, might then be best written in

relation to the old contract. Informally, if the upgrade is to patch a bug, we might specify that the new

contract behave identically to the old, except that it patches the buggy functionality. If the upgrade

adds functionality, we might specify that new functionality as normal, and then specify that all the

functionality of the old contract still hold for the new—or specify exactly how it changes in relation to

the old. Finally, if we are optimizing, we might specify that the new contract behave exactly like the old,

except that it improve in some metric like gas efficiency or precision of some calculation.

Of course, in practice upgrades are not specified in relation to an older version, but rather by altering the

old specification into the new, or simply starting from scratch and writing a new specification by hand.

However, we run into the same issue that we saw with the economic properties implied by a specification

in Chapter 4: such a specification tries to target what is meant by an upgrade, which is typically described

informally by the difference between old and new contract versions; whether or not the specification

succeeds is at best a matter of intuition. In the case of a financial contract, how can we be sure that

small changes to the specification do not corrupt its correctness with regards to a metaspecification? As

we saw in §1.2.2, it is not straightforward to get these right and can lead to costly exploits.

If we are able to formally compare the old and new contracts and their specifications, we can verify the

specification of a contract upgrade correct via a metaspecification that articulates how the new contract

should relate to the old, just as we have done informally above. We will show in §5.4 that a contract

upgrade can be specified by formally relating the new contract version to the previous version by using

contract morphisms.
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5.1.3 Related Work

Little work has gone into understanding contract upgradeability from a formal perspective. There are

two notable exceptions, both of which have similarities to what we propose here.

The first is work by Antonino et al. [14], which seeks to address vulnerabilities in contract upgrades

by proposing a novel systematic deployment framework that requires contracts to be formally verified

before they are deployed or upgraded. The framework relies on a trusted deployer, which is an off-chain

service that vets contract creations and updates. Under this framework, at deployment of an upgradeable

contract one can specify the bounds of upgradeability by requiring from the trusted deployer that certain

invariants hold through all upgrades.

The second is work by Dickerson et al. [47], which proposes a paradigm shift for blockchains and

smart contracts so that smart contracts can carry with them proofs of correctness. These are called

proof-carrying smart contracts. These contracts can be upgradeable, so long as the upgraded contract

carries a proof that it conforms to a specification by the original deployed contract. This work relates to

previous work outside the context of blockchains on dynamic software updating [72] and proof-carrying

code [99].

Both of these seek to limit the bounds of upgradeability by requiring that upgrades conform to some kind

of a specification, where Antonino et al. rely on a trusted deployer to verify that an upgrade meets a

specification before deploying the upgrade, and Dickerson et al. require a new paradigm of proof-carrying

smart contracts so that the blockchain itself can verify a proof that a contract upgrade conforms to

certain specified standards. In both cases, there is a desire to be able to specify certain invariants at the

time of deployment that cannot be altered through upgrades.

Our approach is distinct. It requires no trusted third party, nor a fundamental paradigm shift into smart

contracts that carry proofs. Rather, using contract morphisms we can mathematically characterize the

bounds of a contract’s upgradeability, and rigorously specify upgraded contracts in relation to older

versions. If one wishes to impose invariants that cannot be changed through upgrades, one can do so by

reasoning about an upgradeable contract’s decomposition into its base contract and version contracts.

5.2 Contract Morphisms

We now move on to introduce contract morphisms, which are a formal mechanism to structurally compare

smart contracts in ConCert. The goal of contract morphisms is to be able to reason about a contract and

its specification in relation to another contract and its specification. As we will see, contract morphisms

can be used to prove and to specify properties of one contract in terms of another (§5.4), as well as to

decompose an upgradeable contract into its mutable and immutable parts (§5.5).
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Recall that the Contract type, parameterized by types Setup, Msg, State, and Error, is a record type

with two constructors: the init function, which dictates how a contract is initialized, and the receive

function, which dictates the semantics of calling a contract entrypoint. In the context of a given state of

the blockchain, the init function takes something of type Setup and, if successful, deploys the contract

with an initial storage of type State.

1 init : Chain -> ContractCallContext -> Setup -> result State Error.

Listing 5.1: The init function of a smart contract.

The receive function then takes the current state of the contract and something of type Msg, and, if

successful, produces an updated storage of type State and a list of emitted transactions.

1 receive : Chain -> ContractCallContext -> State -> option Msg ->

2 result (State * list ActionBody) Error.

Listing 5.2: The receive function of a smart contract.

Now consider contracts

C1 : Contract Setup1 Msg1 State1 Error1

C2 : Contract Setup2 Msg2 State2 Error2

with respective init and receive functions init1, init2 and receive1, receive2. We define a morphism

of contracts, which we write f : ContractMorphism C1 C2, as a natural transformation of init and

receive functions,

f init : init1 -> init2 and f recv : receive1 -> receive2.

In other words, we define a function from inputs to init1 to inputs to init2, and from outputs of

init1 to outputs of init2, such that if we transform inputs to init1 and then take their image under

init2, we get the same result as if we had first taken the image of the inputs under init1 and then

transformed the outputs to those of init2. We do the same for receive1 and receive2. See Figure 5.1

for a graphical representation.

I1i I2i R1
i R2

i

I1o I2o R1
o R2

o

f init

init init′

f recv

receive receive′

f init f recv

Figure 5.1: The init and receive components of a contract morphism, where I1i and I1o (resp. I2i and I2o )
are the input and output types of C1.(init) (resp. C2.(init)), and R1

i and R1
o (resp. R2

i and R2
o) are

the input and output types of C1.(receive) (resp. C2.(receive)). Both diagrams commute, meaning
that starting from the upper-left corner, moving horizontally first and then vertically yields the same
result as moving verticaly first and then horizontally.
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We will derive the natural transformations between init and receive functions from functions on the

contract’s parameterizing types, requiring four component functions:

• setup morph : Setup1 -> Setup2

• msg morph : Msg1 -> Msg2

• state morph : State1 -> State2

• error morph : Error1 -> Error2,

such that the following two coherence conditions hold:

• For all c, ctx, and s, transforming (C1.(init) c ctx s) using state morph and error morph

gives us (C2.(init) c ctx (setup morph s)); and

• For all c, ctx, st, and op msg, transforming (C1.(receive) c ctx st op msg) with state morph

and error morph gives us

C2.(receive) c ctx (state morph st) (option map msg morph op msg).

See the definition of the type ContractMorphism C1 C2 in Coq below.

1 Record ContractMorphism

2 (C1 : Contract Setup1 Msg1 State1 Error1)

3 (C2 : Contract Setup2 Msg2 State2 Error2) :=

4 build_contract_morphism {

5 (* the components of a morphism f *)

6 setup_morph : Setup1 -> Setup2 ;

7 msg_morph : Msg1 -> Msg2 ;

8 state_morph : State1 -> State2 ;

9 error_morph : Error1 -> Error2 ;

10 (* coherence conditions *)

11 init_coherence : forall c ctx s,

12 result_functor state_morph error_morph

13 (init C1 c ctx s) =

14 init C2 c ctx (setup_morph s) ;

15 recv_coherence : forall c ctx st op_msg,

16 result_functor (fun ’(st, l) => (state_morph st, l)) error_morph

17 (receive C1 c ctx st op_msg) =

18 receive C2 c ctx (state_morph st) (option_map msg_morph op_msg) ;

19 }.

Listing 5.3: The definition of contract morphisms in ConCert.

Here, result functor is the following function, which for types T and E, simply takes functions of type

T -> T’ and E -> E’ and returns a function of type result T E -> result T’ E’.
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1 Definition result_functor {T T’ E E’ : Type} :

2 (T -> T’) -> (E -> E’) -> result T E -> result T’ E’ :=

3 fun (f_t : T -> T’) (f_e : E -> E’) (res : result T E) =>

4 match res with | Ok t => Ok (f_t t) | Err e => Err (f_e e) end.

Listing 5.4: The result functor to transform results of init and receive.

Example 5.2.1 (Hello, world!). Consider a contract C1 which keeps a nat in storage, which can be

incremented by calling the contract’s unique entrypoint incr. Consider another contract C2 which has

the same storage type as C1 and two entrypoints: the first, incr’ which behaves identically to incr, and

the second, reset, which can be called to reset the nat in storage to 0.

We can construct a contract morphism f : ContractMorphism C1 C2 by simply sending messages to

the incr entrypoint of C1 to the incr’ entrypoint of C2, and using the identity function for all other

component functions.

1 Definition msg_morph (e : entrypoint) : entrypoint’ :=

2 match e with | incr _ => incr’ tt end.

3 Definition setup_morph : setup -> setup := id.

4 Definition state_morph : storage -> storage := id.

5 Definition error_morph : error -> error := id.

Listing 5.5: The component functions of a morphism from C1 to C2 which sends the incr entrypoint of

C1 to the incr’ entrypoint of C2.

After proving the coherence results, init coherence and recv coherence, we can construct a morphism.

1 Definition f : ContractMorphism C1 C2 :=

2 build_contract_morphism C1 C2 setup_morph msg_morph state_morph error_morph

3 init_coherence recv_coherence.

Listing 5.6: A morphism from C1 to C2 which sends messages to the incr entrypoint of C1 to messages

to the incr’ entrypoint of C2.

Example 5.2.2 (Identity Morphism). One important contract morphism is the identity morphism id cm,

which is defined for any contract C and inhabits ContractMorphism C C.

1 Definition id_cm (C : Contract Setup Msg State Error) : ContractMorphism C C := {|

2 (* components *)

3 setup_morph := id ;

4 msg_morph := id ;

5 state_morph := id ;

6 error_morph := id ;

7 (* coherence conditions *)

8 init_coherence := init_coherence_id C ;

9 recv_coherence := recv_coherence_id C ;

10 |}.

Listing 5.7: The identity contract morphism id cm C defined for any contract C.

71



The associated coherence results are proved trivially by reflexivity.

1 Lemma init_coherence_id (C : Contract Setup Msg State Error) :

2 forall c ctx s,

3 result_functor id id (init C c ctx s) =

4 init C c ctx s.

Listing 5.8: The init coherence lemma for the identity morphism which is proved by reflexivity.

1 Lemma recv_coherence_id (C : Contract Setup Msg State Error) :

2 forall c ctx st op_msg,

3 result_functor

4 (fun ’(st, l) => (id st, l)) id

5 (receive C c ctx st op_msg) =

6 receive C c ctx (id st) (option_map id op_msg).

Listing 5.9: The receive coherence lemma for the identity morphism which is proved by reflexivity.

Example 5.2.3 (Injective, surjective morphisms). Injective and surjective functions are ubiquitous in

mathematics. Injective functions, also called embeddings, are those which are fully structure-preserving.

We can give a formal definition for injectivity here:

1 Definition is_inj {A B : Type} (f : A -> B) : Prop :=

2 forall (a a’ : A), f a = f a’ -> a = a’.

Listing 5.10: A formal definition of injectivity.

In other words, injective functions send distinct terms to distinct terms.

Surjective functions, also called quotients, are those for which every term in the function’s codomain

has a preimage. Rather than being structure-preserving, surjective functions are often (but not always)

structure-compressing. We can give a formal definition for surjectivity here:

1 Definition is_surj {A B : Type} (f : A -> B) : Prop :=

2 forall (b : B), exists (a : A), f a = b.

Listing 5.11: A formal definition of surjectivity.

We wish to define the analogues for contract morphisms. Contract embeddings, or injections, will be

those which are fully structure-preserving: if f : ContractMorphism C1 C2 is an embedding, then we

can think of C2 as having a copy of C1 in it. This will become relevant later, e.g. in Example 5.4.2.

A contract morphism f, then, is an embedding if all of its component functions are injective. Formalized

in ConCert, we have a predicate is inj cm which is defined as follows in Listing 5.12.
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1 Definition is_inj_cm (f : ContractMorphism C1 C2) : Prop :=

2 is_inj (setup_morph C1 C2 f) /\

3 is_inj (msg_morph C1 C2 f) /\

4 is_inj (state_morph C1 C2 f) /\

5 is_inj (error_morph C1 C2 f).

Listing 5.12: An embedding of contracts is a contract morphism whose component morphisms are injective.

Likewise, we can define contract quotients, or surjections. These will be contract morphisms that compress

structure, and will become relevant e.g. in Example 5.4.1 as a tool to categorize contract behavior.

A contract morphism f, then, is a quotient of contracts if all of its component functions are surjective.

Formalized in ConCert, we have a predicate is surj cm which is defined as follows in Listing 5.13.

1 Definition is_surj_cm (f : ContractMorphism C1 C2) : Prop :=

2 is_surj (setup_morph C1 C2 f) /\

3 is_surj (msg_morph C1 C2 f) /\

4 is_surj (state_morph C1 C2 f) /\

5 is_surj (error_morph C1 C2 f).

Listing 5.13: A quotient of contracts is a contract morphism whose component morphisms are surjective.

Example 5.2.4 (Equality of Morphisms). Given two morphisms

f g : ContractMorphism C1 C2,

we might ask ourselves whether or not they are equal. This will be relevant e.g. in Example 5.2.7 and

Chapter 6 when we introduce contract isomorphisms and equivalences.

By assuming proof irrelevance, we get f = g if and only if each of the component functions are equal via

function extensionality. This is because the proofs of coherence for f have the same type as those for g if

their component functions are equal.

1 Lemma eq_cm_iff :

2 forall (f g : ContractMorphism C1 C2),

3 (* the components are equal ... *)

4 (setup_morph C1 C2 f) = (setup_morph C1 C2 g) /\

5 (msg_morph C1 C2 f) = (msg_morph C1 C2 g) /\

6 (state_morph C1 C2 f) = (state_morph C1 C2 g) /\

7 (error_morph C1 C2 f) = (error_morph C1 C2 g) <->

8 (* ... iff the morphisms are equal *)

9 f = g.

Listing 5.14: Equality of contract morphisms.

73



5.2.1 Composition of Morphisms

Contract morphisms can be composed. We define composition via a function compose cm, which takes

morphisms

f : ContractMorphism C1 C2 and g : ContractMorphism C2 C3

and returns a morphism

compose cm g f : ContractMorphism C1 C3.

To compose contract morphisms, we simply compose their component functions.

1 Definition compose_cm (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

2 ContractMorphism C1 C3 := {|

3 (* the components *)

4 setup_morph := compose (setup_morph C2 C3 g) (setup_morph C1 C2 f) ;

5 msg_morph := compose (msg_morph C2 C3 g) (msg_morph C1 C2 f) ;

6 state_morph := compose (state_morph C2 C3 g) (state_morph C1 C2 f) ;

7 error_morph := compose (error_morph C2 C3 g) (error_morph C1 C2 f) ;

8 (* the coherence results *)

9 init_coherence := compose_init_coh g f ;

10 recv_coherence := compose_recv_coh g f ;

11 |}.

Listing 5.15: Composition of contract morphisms in ConCert.

The function compose cm relies on two lemmas, compose init coh g f and compose recv coh g f,

which prove the coherence results for the composed natural transformations of Figure 5.1. These lemmas

simply show that commuting diagrams compose. That is, if we have the diagram below such that each of

the left and right squares commute, then the outer rectangle also commutes.

A C E

B D F

f

i1

g

j1

h

i2 j2

1 Lemma compose_init_coh (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

2 let setup_morph’ := (compose (setup_morph C2 C3 g) (setup_morph C1 C2 f)) in

3 let state_morph’ := (compose (state_morph C2 C3 g) (state_morph C1 C2 f)) in

4 let error_morph’ := (compose (error_morph C2 C3 g) (error_morph C1 C2 f)) in

5 forall c ctx s,

6 result_functor state_morph’ error_morph’

7 (init C1 c ctx s) =

8 init C3 c ctx (setup_morph’ s).

Listing 5.16: The init coherence lemma for morphism composition.
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1 Lemma compose_recv_coh (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

2 let msg_morph’ := (compose (msg_morph C2 C3 g) (msg_morph C1 C2 f)) in

3 let state_morph’ := (compose (state_morph C2 C3 g) (state_morph C1 C2 f)) in

4 let error_morph’ := (compose (error_morph C2 C3 g) (error_morph C1 C2 f)) in

5 forall c ctx st op_msg,

6 result_functor

7 (fun ’(st, l) => (state_morph’ st, l)) error_morph’

8 (receive C1 c ctx st op_msg) =

9 receive C3 c ctx (state_morph’ st) (option_map msg_morph’ op_msg).

Listing 5.17: The receive coherence lemma for morphism composition.

Example 5.2.5 (Composition with the identity morphism). Composing any morphism with the identity

morphism does nothing, and the proof is trivial using the equality lemma eq cm iff from Example 5.2.4.

1 Lemma compose_id_cm_left (f : ContractMorphism C1 C2) :

2 compose_cm (id_cm C2) f = f.

3

4 Lemma compose_id_cm_right (f : ContractMorphism C1 C2) :

5 compose_cm f (id_cm C1) = f.

Listing 5.18: Left and right composition of the identity morphism is trivial.

Example 5.2.6 (Morphism Composition is Associative). Composition is associative. This is a trivial

proof using the equality lemma eq cm ff from Example 5.2.4, since composition of each component

function of a contract morphism is also associative.

1 Lemma compose_cm_assoc

2 (f : ContractMorphism C1 C2)

3 (g : ContractMorphism C2 C3)

4 (h : ContractMorphism C3 C4) :

5 compose_cm h (compose_cm g f) =

6 compose_cm (compose_cm h g) f.

Listing 5.19: Composition of contract morphisms is associative

Example 5.2.7 (Contract Isomorphism). Finally, using notions of composition, identity, and equality,

we can define contract isomorphisms. As we will see in Chapter 6, these are morphisms for which the

formal, structural relationship expressed between the contracts is an equivalence. We define these via the

following predicate.

1 Definition is_iso_cm (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1) : Prop :=

2 compose_cm g f = id_cm C1 /\

3 compose_cm f g = id_cm C2.

Listing 5.20: The formal definition of an isomorphism of contracts.
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That is, morphisms f : ContractMorphism C1 C2 and g : ContractMorphism C2 C1 are together

an isomorphism of contracts if, when composed in either order, their composition is equal to the identity

morphism. As we will see in Chapter 6, a contract isomorphism results in a bisiumlation of contracts.

5.3 Morphism Induction

In sections 5.4 and 5.5 we will explore specification and proof using contract morphisms in depth. Before

doing so, we must introduce a proof technique which incorporates contract morphisms with ConCert’s

contract induction tactic in order to prove contract invariants.

Consider contracts C1 and C2 and a contract morphism

f : ContractMorphism C1 C2.

We prove two theorems, addressing two cases. The first, which we call left morphism induction, can be

used to prove an invariant of C1 using known properties of C2. The second, which we call right morphism

induction, can be used to prove an invariant of C2 using known properties of C1.

5.3.1 Contract Trace and Reachability

Before introducing left and right morphism induction, we need the notions of contract trace and contract

reachability. These are analogous to ConCert’s notions of chain trace and reachable chain states. The two

are related in that the state of a contract deployed in a reachable chain state is always a contract-reachable

state, but contract-reachable states could in principle include some states which do not correspond to any

reachable chain state.

First, we define contract steps as successful calls to the receive function.

1 Record ContractStep (C : Contract Setup Msg State Error)

2 (prev_cstate : State) (next_cstate : State) :=

3 build_contract_step {

4 seq_chain : Chain ;

5 seq_ctx : ContractCallContext ;

6 seq_msg : option Msg ;

7 seq_new_acts : list ActionBody ;

8 (* we can call receive successfully *)

9 recv_some_step :

10 receive C seq_chain seq_ctx prev_cstate seq_msg = Ok (next_cstate, seq_new_acts) ;

11 }.

Listing 5.21: Contract steps are successful calls to the receive function.

Then a contract’s trace is a chained list of contract states, linked together by contract steps.
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1 Definition ContractTrace (C : Contract Setup Msg State Error) :=

2 ChainedList State (ContractStep C).

Listing 5.22: A contract’s trace is a chained list of contract states, linked together by contract steps.

This gives us a natural notion of a contract-genesis state, which is defined as a state into which it is

possible for the contract to initialize.

1 Definition is_genesis_state (C : Contract Setup Msg State Error) (init_cstate : State) :=

2 exists init_chain init_ctx init_setup,

3 init C init_chain init_ctx init_setup = Ok init_cstate.

Listing 5.23: A contract genesis state is one into which a contract can initialize.

It also gives us a natural notion of a reachable contract state, which is a state with a trace from some

contract genesis state.

1 Definition cstate_reachable (C : Contract Setup Msg State Error) (cstate : State) :=

2 exists init_cstate,

3 (* init_cstate is a valid initial cstate *)

4 is_genesis_state C init_cstate /\

5 (* with a trace to cstate *)

6 inhabited (ContractTrace C init_cstate cstate).

Listing 5.24: A contract-reachable state is one for which there exists a trace from a contract genesis state.

We will use these definitions in the remainder of this chapter, as well as in Chapter 6.

5.3.2 Left Morphism Induction

Recall from §3.4 that to prove a contract invariant with contract induction, one proves the invariant on

the base case (contract deployment), and the inductive step consists of all the ways that the blockchain

can make progress. A contract morphism f : ContractMorphism C1 C2 indicates that there is a

structural relationship between C1 and C2 at each of the relevant steps of induction: first at contract

deployment, the base case, via the transformation of the init function; and then at each inductive step

via the transformation of the receive function.

This means that when performing contract induction on C1, we should have access to the corresponding

relational structure of C2—and the same going the other way if we’re inducting on C2. As we will see, we

might wish to prove an invariant of C1 in terms of an invariant on C2.

Left morphism induction facilitates such a goal, stating that for any blockchain state bstate where

C1 is deployed at some contract address caddr with state cstate1, there exists a corresponding state

cstate2 of C2, which is a contract-reachable state of C2, and which is the image of cstate1 under the

state morph component of f.
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1 (* f : C1 -> C2, inducting on C1 *)

2 Theorem left_cm_induction :

3 (* forall simple morphism and reachable bstate, *)

4 forall (f : ContractMorphism C1 C2) bstate caddr

5 (trace : ChainTrace empty_state bstate),

6 (* where C is at caddr with state cstate, *)

7 env_contracts bstate caddr = Some (C1 : WeakContract) ->

8 exists (cstate1 : State1),

9 contract_state bstate caddr = Some cstate1 /\

10 (* every reachable cstate1 of C1 corresponds to a contract-reachable cstate2 of C2: *)

11 exists (cstate2 : State2),

12 (* 1. init_cstate2 is a valid initial cstate of C’ *)

13 cstate_reachable C2 cstate2 /\

14 (* 2. cstate and cstate’ are related by state_morph. *)

15 cstate2 = state_morph C1 C2 f cstate1.

Listing 5.25: Left contract morphism induction.

In particular, if we can deduce an invariant of cstate1 from a known invariant of cstate2 by their

relationship defined by state morph, then we can prove our invariant of C1 via an invariant of C2.

5.3.3 Right Morphism Induction

Right morphism induction takes the opposite case: we prove an invariant of C2 via known properties of

C1 using a morphism f : ContractMorphism C1 C2. Because of the direction of f, we do not know

that every reachable state of C2 has a corresponding reachable state of C1 related to that of C2 via

state morph. Rather, we prove that if we can find a contract trace of C1, it can be transformed into one

of C2.

1 (* f : C1 -> C2, inducting on C2 *)

2 Theorem right_cm_induction:

3 forall (from to : State1) (f : ContractMorphism C1 C2),

4 (* every contract trace, and thus reachable state, of C1 ... *)

5 ContractTrace C1 from to ->

6 (* has a corresponding contract trace of C2 *)

7 ContractTrace C2 (state_morph C1 C2 f from) (state_morph C1 C2 f to).

Listing 5.26: Right contract morphism induction.

Right morphism induction, then, can be used to prove the existence of some contract-reachable state

of C2 via one of C1. For example, if C2 is an upgraded version of C1, one way to specify backwards

compatibility is that every contract-reachable state of C1 has a corresponding contract-reachable state of

C2 which preserves essential data. We prove this by right morphism induction in Example 5.4.2.
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5.4 Reasoning with Morphisms: Specification and Proof

Morphisms can be used in a variety of ways in proof and specification of smart contracts. We will

demonstrate with three examples: specifying a contract upgrade in relation to the old (§5.4.1), proving

backwards compatibility (§5.4.2), and proving Hoare-like properties of partial correctness (§5.4.3).

5.4.1 Specifying a Contract Upgrade With Morphisms

Let us revisit the Urainum Finance exploit from §1.2.2.

Example 5.4.1 (Uranium Finance Upgrade Specification). Recall from §1.2.2 Uranium Finance, a

contract which was exploited because developers replaced a constant k set at 1,000 with 10,000 in all

but one of its instances during an upgrade. The result was wildly incorrect pricing, which rapidly drained

their liquidity pools.

Suppose C1 is the Uranium Finance contract pre-upgrade, and C2 is the contract post-upgrade, and

suppose the upgrade was only to adjust how the contract prices trades. Suppose further that the upgrade

was to increase the decimal precision of this calculation by a factor of ten, meaning that the internal

token balances in storage have one more decimal place, and the trade calculation is able to calculate at

one decimal place greater in precision.

The original contract C1 will have a storage type, then, which keeps track of internal token balances.

1 Context { storage : Type } { get_bal : storage -> N }.

Listing 5.27: We assume a storage type and a function which calculates balances.

It will also have a TRADE entrypoint which accepts a message whose payload includes a desired trade

quantity, which we formalize with a typeclass as we did in Chapter 4.

1 (* A typeclass which characterizes the entrypoint type *)

2 Class Msg_Spec (T : Type) := {

3 trade : trade_data -> T ;

4 (* for any other entrypoint types *)

5 other : other_entrypoint -> option T ;

6 }.

7

8 (* We assume an entrypoint conforming to Msg_Spec *)

9 Context { entrypoint : Type } ‘{ e_msg : Msg_Spec entrypoint }.

Listing 5.28: We assume an entrypoit type, characterized by Msg Spec, which includes a trade function,

and introduce into the context an entrypoint type and an instance of Msg Spec entrypoint.

We now assume that C1 has some function calculate trade which calculates how many tokens will be

traded in for a given contract call to the TRADE entrypoint. The trade quantity, internal token balances,
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and the calculate trade function will all be accurate up to some decimal place, commonly 6 or 9 in

the wild. This is formalized in the following property, which we assume into our context.

1 (* get_bal changes according to calculate_trade, meaning that: *)

2 Definition spec_trade : Prop :=

3 forall cstate chain ctx trade_data cstate’ acts,

4 (* for any successful call to the trade entrypoint of C1, *)

5 receive C1 chain ctx cstate (Some (trade trade_data)) = Ok(cstate’, acts) ->

6 (* the balance in storage updates as follows. *)

7 get_bal cstate’ =

8 get_bal cstate + calculate_trade (trade_qty trade_data).

Listing 5.29: The formalized proposition that C1 uses calculate trade to price trades.

Now when we upgrade C1 to C2 with the exclusive purpose of increasing the accuracy by one decimal

place for internal token balances and trades, we update calculate trade to calculate trade precise

which calculates at one higher decimal place of accuracy. This is formalized as follows.

1 (* an auxiliary function which rounds down by one decimal place *)

2 Definition round_down (n : N) := n / 10.

3

4 (* we assume that calculate_trade_precise is related to calculate_trade by round_down *)

5 Context { calculate_trade_precise : N -> N }

6 (* (i.e. calculate_trade_precise rounds down to calculate_trade) *)

7 { calc_trade_coherence : forall n,

8 round_down (calculate_trade_precise n) =

9 calculate_trade (round_down n) }.

Listing 5.30: We assume a function calculate trade precise, which always rounds down to the

calculate trade function.

Then C2 is assumed to use calculate trade precise to calculate its trades, formalized in this assumed

proposition which is the analogue of spec trade but for C2.

1 (* Now trades are calculated in line with calculate_trade_precise. *)

2 Definition spec_trade_precise : Prop :=

3 forall cstate chain ctx trade_data cstate’ acts,

4 (* ... meaning that for a successful call to the trade entrypoint of C2, *)

5 receive C2 chain ctx cstate (Some (trade trade_data)) = Ok(cstate’, acts) ->

6 (* the balance held in storage goes up by calculate_trade_precise. *)

7 get_bal cstate’ =

8 get_bal cstate + calculate_trade_precise (trade_qty trade_data).

Listing 5.31: The formalized proposition that C2 uses calculate trade precise to price trades.

Assuming that we have already formally verified C1 correct with respect to some formal specification

(and metaspecification), and wished to do the same for C2, we might do so by altering the specification of

C1 until it correctly specifies the contract C2, and then verify C2 from the ground up. As nearly all of the
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contract functionality remained unchanged in the upgrade, this would require re-proving many results

already proved about C1, where the slight changes we made to C1 would likely make it impossible to

simply copy/paste the proofs. Furthermore, as we saw in the previous chapter, specifications are difficult

to write correctly, and small changes to the specification may have unintended consequences. And in

altering the specification we might make the same error that the Uranium Finance engineers did and

unintentionally create a vulnerability.

To ensure safety, our metaspecification specifies a relationship between C2 and C1: C2 should “do

everything that C1 does,” except that internal balances and trades should be calculated at one decimal

place higher in precision. We can articulate this rigorously through a contract morphism f from the

contract upgrade C2 to the original contract C1 that has the following properties.

First, that when f sends inputs of C2.(receive) to C1.(receive), it rounds down the precision of the

requested trades using our rounding function round down.

1 (* 1. f rounds trades down when it maps inputs of the receive function *)

2 Definition f_recv_input_rounds_down (f : ContractMorphism C2 C1) : Prop :=

3 forall t’, exists t,

4 (msg_morph C2 C1 f) (trade t’) = trade t /\

5 trade_qty t = round_down (trade_qty t’).

Listing 5.32: f rounds down the inputs of the receive function.

Second, that f is the identity morphism on all entrypoints aside from the trade entrypoint.

1 (* 2. aside from trade, f doesn’t touch the other entrypoints *)

2 Definition f_recv_input_other_equal (f : ContractMorphism C2 C1) : Prop :=

3 forall msg o,

4 (* for calls to all other entrypoints, *)

5 msg = other o ->

6 (* f is the identity *)

7 option_map (msg_morph C2 C1 f) (other o) = other o.

Listing 5.33: f is the identity morphism on all but the trade entrypoint.

Third, that f rounds down on the balances kept in storage exposed by get bal, but is the identity on all

other aspects of the storage.

1 (* 3. f rounds down on the storage, but doesn’t touch anything else. *)

2 Context {st_morph : storage -> storage}

3 {state_rounds_down : forall st, get_bal (st_morph st) = round_down (get_bal st)}.

4

5 Definition f_state_morph (f : ContractMorphism C2 C1) : Prop :=

6 (state_morph C2 C1 f) = st_morph.

Listing 5.34: f rounds down balances kept in storage.
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Fourth, that f is the identity function on error values.

1 (* 4. f is the identity on error values *)

2 Definition f_recv_output_err (f : ContractMorphism C2 C1) : Prop :=

3 (error_morph C2 C1 f) = id.

Listing 5.35: f is the identity on error values.

Fifth and finally, that f is the identity on setup values.

1 (* 5. f is the identity on contract initialization *)

2 Definition f_init_id (f : ContractMorphism C2 C1) : Prop :=

3 (setup_morph C2 C1 f) = id.

Listing 5.36: f is the identity on setup values.

The two coherence results of a contract morphism f satisfying these properties show that the upgrade

from C1 to C2 was done as intended: we increased precision successfully without changing how trades were

priced. We know this because we have that, after rounding, a trade on C2 is the same as the analogous

trade on C1. We also know that all other functionality remains the same. In particular, this is where the

Uranium Finance engineers would have realized the pricing mechanism of the upgraded contract did not

conform to that of the old, avoiding the catastrophic mistake and subsequent exploitation.

We show this via the following formalized contract invariant on C2, which is proved by left morphism

induction. It states that for any reachable state of C2, the analogue state of C1 given by the contract

morphism f : ContractMorphism C2 C1 simply rounds the balances down.

1 Theorem rounding_down_invariant bstate caddr (trace : ChainTrace empty_state bstate):

2 (* Forall reachable states with contract at caddr, *)

3 env_contracts bstate caddr = Some (C2 : WeakContract) ->

4 (* cstate is the state of the contract AND *)

5 exists (cstate’ cstate : storage),

6 contract_state bstate caddr = Some cstate’ /\

7 (* cstate is contract-reachable for C1 AND *)

8 cstate_reachable C1 cstate /\

9 (* such that for cstate, the state of C1 in bstate,

10 the balance in cstate is rounded-down from the balance of cstate’ *)

11 get_bal cstate = round_down (get_bal cstate’).

Listing 5.37: All reachable states of C2 round down to their corresponding states in C1.

In particular, any contract-reachable state of C2 has an analogous contract-reachable state of C1, so any

invariants of C1 which are independent of the precision of balances kept in storage and of trades still hold

for C2. Those which depend on the precision may have an analogous form which holds for C2; with the

contract morphism in place, this would be the only verification work required to formally verify C2 to be

correct.
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5.4.2 Adding Features and Backwards Compatibility

In a similar spirit to Example 5.4.1, let us consider how we might formally specify backwards compatibility

using a contract morphism.

Example 5.4.2 (Backwards Compatibility). Consider contracts C1 and C2, where C2 is an upgrade of

C1, and suppose that we wish to show that C2 is backwards compatible with C1.

This can be expressed via a contract morphism in a very precise way: one can not only prove that C2 is

backwards compatible with C1, but also indicate exactly how—we can indicate which entrypoints and

actions in the new contract correspond to which functionality of the old through the component functions

of the contract morphism.

We illustate with an example of a counter contract C1 which keeps n : N in storage and has one

entrypoint incr that increments the natural number in storage by 1. C1 is upgraded to C2, which in

addition to an entrypoint to increment the natural number in storage also includes a decr entrypoint to

decrement the natural number in storage by 1.

1 Inductive entrypoint1 := | incr (u : unit).

2 Inductive entrypoint2 := | incr’ (u : unit) | decr (u : unit).

Listing 5.38: The entrypoint types of C1 and C2, respectively.

We will prove that C2 is backwards compatible with C1 by defining a contract morphism

f : ContractMorphism C1 C2

with the following component functions.

1 Definition msg_morph (e : entrypoint1) : entrypoint2 :=

2 match e with | incr _ => incr’ tt end.

3 Definition setup_morph : setup -> setup := id.

4 Definition state_morph : storage -> storage := id.

5 Definition error_morph : error -> error := id.

Listing 5.39: The component functions of a morphism defining backwards compatibility.

Note first that f is an embedding since each of its component functions are injections.

1 Lemma embedding : is_inj_cm f.

Listing 5.40: The resulting morphism f is an embedding of contracts.

In particular, this means that any reachable state of C1 has an analagous reachable state of C2 which is

fully structure preserving: if we were to only use the functionality of C2 which it inherits from C1, we

would get identical contract behavior.
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We prove this result using morphism induction as follows. The theorem states that for all reachable chain

states with C1 deployed, there is a corresponding contract-reachable state of C2 whose state is equal to

that of C1.

1 Theorem injection_invariant bstate caddr (trace : ChainTrace empty_state bstate):

2 (* Forall reachable states with contract C1 at caddr, *)

3 env_contracts bstate caddr = Some (C1 : WeakContract) ->

4 (* forall reachable states of C1 cstate, there’s a corresponding reachable state

5 cstate’ of C2, related by the injection *)

6 exists (cstate’ cstate : storage),

7 contract_state bstate caddr = Some cstate /\

8 (* cstate’ is a contract-reachable state of C2 *)

9 cstate_reachable C2 cstate’ /\

10 (* .. equal to cstate *)

11 cstate’ = cstate.

Listing 5.41: C2 is backwards compatible with C1 via the contract embedding f.

That the corresponding, contract-reachable state of C2 is equal to the state of C1 is precisely what is

meant by backwards-compatibility: were we to use only the entrypoints of C2 inherited from C1, we would

get identical contract behavior.

Like in Example 5.4.1, which specified meta properties of an upgrade, backwards compatibility can be

articulated in a metaspecification for an arbitrary pair of contracts and their specifications, that requires

a contract embedding of one contract into another.

5.4.3 Transporting Hoare-Like Properties Over a Morphism

Departing slightly from the previous two examples, we introduce a generic proof technique which uses the

coherence proofs of a contract morphism to transport Hoare-like properties over a contract morphism.

Consider the property unpool emits txns from the structured pools specification of §4.4, which is

formalized as follows (see line 219 of Listing A.5 in Appendix A.1.2 for the full context).

1 (* When the UNPOOL entrypoint is successfully called, it emits a BURN call to the

2 pool_token, with q in the payload *)

3 Definition unpool_emits_txns (contract : Contract Setup Msg State Error) : Prop :=

4 forall cstate chain ctx msg_payload cstate’ acts,

5 (* the call to UNPOOL was successful *)

6 receive contract chain ctx cstate (Some (unpool msg_payload)) = Ok(cstate’, acts) ->

7 (* in the acts list there are burn and transfer transactions *)

8 exists burn_data burn_payload transfer_to transfer_data transfer_payload,

9 (* there is a burn call in acts *)

10 let burn_call := (act_call

11 (* calls the pool token address *)

12 (stor_pool_token cstate).(token_address)
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13 (* with amount 0 *)

14 0

15 (* with payload burn_payload *)

16 (serialize (FA2Spec.Retire burn_payload))) in

17 (* with has burn_data in the payload *)

18 In burn_data burn_payload /\

19 (* and burn_data has these properties: *)

20 burn_data.(FA2Spec.retire_amount) = msg_payload.(qty_unpooled) /\

21 (* the burned tokens go from the unpooler *)

22 burn_data.(FA2Spec.retiring_party) = ctx.(ctx_from) /\

23 (* there is a transfer call *)

24 let transfer_call := (act_call

25 (* call to the token address *)

26 (msg_payload.(token_unpooled).(token_address))

27 (* with amount = 0 *)

28 0

29 (* with payload transfer_payload *)

30 (serialize (FA2Spec.Transfer transfer_payload))) in

31 (* with a transfer in it *)

32 In transfer_data transfer_payload /\

33 (* which itself has transfer data *)

34 In transfer_to transfer_data.(FA2Spec.txs) /\

35 (* whose quantity is the quantity pooled *)

36 let r_x := get_rate msg_payload.(token_unpooled) (stor_rates cstate) in

37 transfer_to.(FA2Spec.amount) = msg_payload.(qty_unpooled) / r_x /\

38 (* and these are the only emitted transactions *)

39 (acts = [ burn_call ; transfer_call ] \/

40 acts = [ transfer_call ; burn_call ]).

Listing 5.42: The unpool emits txns property from the formal specification of §4.4, which is a Hoare-like

property of partial correctness.

Note that on line 6 of Listing 5.42, we assume that the contract executes without error, assuming

receive contract chain ctx state (Some msg) = Ok(cstate’, acts),

where msg is of the form (unpool msg payload) and cstate’ is the updated state after the transaction.

The remainder of unpool emits txns is various properties of the list of emitted transactions, acts,

stating that there has to be a transfer transaction in the list and specifying what the payload of that

transaction needs to look like. A proof of unpool emits txns consists of constructing an outgoing

transaction which is emitted by any successful call under those conditions.

More fundamentally, unpool emits txns is a Hoare-like assertion of partial correctness, reasoning about

a successful call to the structured pool contract, where the preconditions are that the state of the chain

be reachable with contract address caddr and state cstate, and the postconditions are statements about

acts and cstate’ including that acts contain an appropriate TRANSFER transaction. Indeed, a reflection

on the formal specification of §4.4 reveals that most of the properties of the specification are of this form.
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Consider contracts C1 and C2 and morphism f : ContractMorphism C1 C2, and suppose that C2

satisfies unpool emits txns. Suppose further that C1 also has an UNPOOL entrypoint. If we wish to prove

unpool emits txns for C1, we must reason about successful calls to the UNPOOL entrypoint. As we will

see, we can take advantage of the coherence results which come with f, namely that a successful call to C1

receive C1 chain ctx state (Some msg) = Ok(cstate’, acts)

results in a successful call to C2

receive C2 chain ctx (f.(state morph) state) (Some (f.(msg morph) msg)) =

(Ok (f.(state morph) cstate’, acts)).

Using this we can reason about successful calls to the UNPOOL entrypoint of C1 via the corresponding call

under f to the UNPOOL entrypoint of C2.

Example 5.4.3 (Transporting a Property From the Specification). Consider contracts

1 C1 : Contract setup entrypoint storage error

2 C2 : Contract setup entrypoint’ storage error

and assume (is sp : is structured pool C2), meaning that C2 is a structured pool, satisfying the

specification of §4.4. Suppose further that the types entrypoint and entrypoint’ are defined as follows:

1 (* entrypoint type *)

2 Inductive entrypoint :=

3 | Pool : pool_data -> entrypoint

4 | Unpool : unpool_data -> entrypoint.

5

6 (* entrypoint’ type *)

7 Inductive entrypoint’ :=

8 | Pool’ : pool_data -> entrypoint’

9 | Unpool’ : unpool_data -> entrypoint’

10 | Trade’ : trade_data -> entrypoint’.

Listing 5.43: The entrypoint types of C1 and C2, respectively.

This gives us an embedding between the entrypoint types of C1 and C2.

1 Definition embed_entrypoint (e : entrypoint) : entrypoint’ :=

2 match e with

3 | Pool p => Pool’ p

4 | Unpool p => Unpool’ p

5 end.

Listing 5.44: An embedding of entrypoint into entrypoint’.

Finally, assume that the functionality of C1 regarding its POOL and UNPOOL entrypoints is identical to

that of C2 regarding its POOL’ and UNPOOL’ entrypoints via the embedding.
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1 Definition init_coherence_prop : Prop :=

2 forall (c : Chain) (ctx : ContractCallContext) (s : setup),

3 init C c ctx s = init C’ c ctx s.

4 Axiom init_coherence_pf : init_coherence_prop.

5

6 Definition recv_coherence_prop : Prop :=

7 forall (c : Chain) (ctx : ContractCallContext) (st : storage) (op_msg : option

entrypoint),

8 receive C c ctx st op_msg =

9 receive C’ c ctx st (option_map embed_entrypoint op_msg).

10 Axiom recv_coherence_pf : recv_coherence_prop.

Listing 5.45: The init and receive functions behave identically under the embedding.

Then we can construct a morphism f : ContractMorphism C1 C2 using the coherence proofs and the

embed entrypoint function that we’ve just seen:

1 (* construct a contract morphism *)

2 Definition f : ContractMorphism C1 C2 := {|

3 setup_morph := id ;

4 msg_morph := embed_entrypoint ;

5 state_morph := id ;

6 error_morph := id ;

7 (* coherence *)

8 init_coherence := init_coherence_pf ;

9 recv_coherence := recv_coherence_pf ;

10 |}.

Listing 5.46: A contract morphism f : ContractMorphism C1 C2.

Now suppose that we wish to prove unpool emits txns C from the structured pools specification.

1 Theorem pullback_unpool_emits_txns : unpool_emits_txns C1.

We already have a proof of unpool emits txns C2, and we know that for all messages msg into C1,

receive C1 c ctx st (Some msg) = receive C2 c ctx st (Some (embed entrypoint msg)).

Since in proving unpool emits txns C1 we assume a successful execution,

receive C1 c ctx st (Some msg) = Ok(cstate’, acts),

via f we get a successful execution of C2,

receive C2 c ctx st (Some embed entrypoint msg) = Ok(cstate’, acts).

Our assumed proof of unpool emits txns C2 gives us a proof of the postconditions of unpool emits txns

for C2, so we can derive the fact that the relevant postconditions of unpool emits txns also hold for

this call of C1. This proves unpool emits txns C1.
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We note that this proof relies on C1 and C2 being very similar to each other. The more C1 and C2 are

similar to each other—for example, in a contract fork or upgrade—the easier it is to use the coherence

results of the contract morphism to prove results about C1 in terms of C2. In particular, if a contract

is only altered slightly to be upgraded, we could save tedious work of re-proving specified properties or

re-specifying by simply using what is already known about the old contract to prove things about the

new via a contract morphism.

5.4.4 Summary

Let us reflect on our goal from §5.1.2 of developing formal language to specify contract upgrades. Our

main observation was that we need language to formally compare old and new contract versions and their

specifications in order to be able to verify that the specification of a new contract version is correct with

regards to the intent of the upgrade.

The examples of this section have shown us that contract morphisms provide such a formal language. In

Example 5.4.1, we articulated the goal of an upgrade which isolated one piece of the contract functionality,

altered it, and left everything else untouched. The intent of the upgrade was expressed through a morphism

which asserted that calculations in the upgrade, when rounded down, be equivalent to calculations in the

previous version. In Example 5.4.2, we precisely specified our goal that a contract upgrade be backward

compatible with a previous version. Again the intent of this upgrade, that we add functionality while

preserving the old, was expressed by a contract embedding which identified precisely which pieces of the

new contract version corresponded to the old. Finally, Example 5.4.3 showed us that properties of one

contract can be used to prove properties of another by way of a contract morphism, which can help us

prove facts about an upgrade in terms of its previous versions.

This gives us our desired formal language for individual upgrades, and it is now our task to treat generic

upgradeable contracts.
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5.5 A Mathematical Characterization of Contract Upgrades

In what follows we will mathematically characterize contract upgradeability using contract morphisms.

Before doing so, we go into greater detail on upgradeable contracts.

5.5.1 The Varieties of Upgradeable Contracts

Upgradeable contracts vary, ranging from limited upgradeability to highly flexible frameworks.

Starting from the limited end, take for example MakerDAO, the contract that governs the stablecoin

DAI. Certain contract parameters can be updated through a vote by MKR token holders, such as the

so-called stability rate, which is an interest rate that affects the price of DAI [83]. While MakerDAO

cannot radically change the contract features and functionality, we still consider it upgradeable as its

functionality can be updated by governance token holders in these limited ways.

Contracts like MakerDAO are an important class of upgradeable contracts called decentralized autonomous

organizations (DAOs). These are smart contracts that are governed collectively by holders of a governance

token [51]. In some DAOs, governance token holders can also vote to alter, and in some cases fully

upgrade, contract functionality. These contracts are governed through a complex web of tokens and

incentives which is a fully-fledged research topic in its own right [29].

For example, take Murmuration, a generic DAO template built on Tezos [128]. Murmuration includes a

governance token contract and a DAO, the latter of which is governed by those who hold governance tokens.

A user submits a proposal which consists of an anonymous lambda function and various metadata. If the

proposal passes and executes, which is determined through a voting procedure by governance token holders,

the lambda of the proposal becomes the new contract functionality, replacing an entrypoint function.

By definition, a lambda has few restrictions, if any, so the upgradeability afforded by Murmuration is

substantially greater than that of MakerDAO.

Moving beyond DAOs, the Diamond upgrade framework [95] from §5.1.1 is an extremely flexible system of

proxy contracts, which essentially allows for fully altering contract functionality. In addition to changing

entrypoint functions like Murmuration, contracts conforming to the Diamond standard can also modify

entrypoints to the contract and add to the contract storage.

Each of these examples lend themselves to an intuitive notion of “how upgradeable” the contracts are,

and we can say with some confidence that the Diamond framework affords greater upgradeability features

than Murmuration, which in turn is more flexible than MakerDAO. But what does this mean, formally?
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5.5.2 Isolating Mutable and Immutable Parts

We wish to formally understand contract upgradeability in order to adequately form metaspecifications for

upgradeable contracts. To do so, we need language which can characterize its upgradeability properties—by

precisely identifying its immutable and mutable parts—as well as language for the governance process

and how the upgrade process relates to the actual contract functionality. To that end, we now consider

an upgradeable contract in relation to its mutable and immutable parts.

First, the immutable part, which we call the base contract. This part of an upgradeable contract is what

governs the upgradeability framework and the corresponding incentive and game-theoretic structure of

the upgrade process. It indicates what about the contract can change, and through what process it can

change, similar to constitutional rules which govern legislative rule-making.

To express this mathematically, we isolate the immutable parts of a contract C into a base contract C b,

and construct a morphism

f p : ContractMorphism C C b

which forgets anything other than the contract structure that governs upgrades and contract versions.

This will be a quotient of contracts.

Example 5.5.1 (Quotient Onto the Base Contract). Consider a contract C whose storage contains some

natural number n : N and a function s : N -> N, and which has two entrypoints: next, which applies

s to n, and updates the number in storage with (s n); and upgrade fun, which accepts a parameter

s’ : N -> N, and replaces s in storage with s’. This contract is upgradeable in the sense that the

functionality of next, the primary way in which a user can act on the number in contract storage, can be

changed by calling upgrade fun.

1 Inductive entrypoint :=

2 | next (u : unit)

3 | upgrade_fun (s’ : N -> N).

4 Record storage := { n : N ; s : N -> N ; }.

Listing 5.47: The entrypoint and storage types of our contract C.

Now let us consider what the immutable part of C is. Because the upgradeability refers to the functionality

of the upgrade fun entrypoint rather than next, the base contract of upgradeable C forgets any natural

number in the storage of C and remembers only the function s : N -> N, which indicates the version

of C. It only has one entrypoint relevant to the structure of C, upgrade fun, which is the upgrade

functionality.

To express this formally, we define the base contract C b, whose entrypoint type, entrypoint b, and

storage type, storage b, are defined as follows in Listing 5.48.
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1 Inductive entrypoint_b’ := | upgrade_fun_b (s’ : N -> N).

2 Definition entrypoint_b := (entrypoint_b’ + unit)%type.

3 Record storage_b := { s_b : N -> N ; }.

Listing 5.48: The entrypoint and storage types of the base contract C b.

The entrypoint type of C b, entrypoint b, is defined as a sum type of entrypoint b’, a type which

isolates the upgradeability entrypoint of C, and the unit type. This is so that we can define a function

msg morph : entrypoint -> entrypoint b.

In particular, we need to be able to send messages of type entrypoint which do not correspond to

upgradeability somewhere other than an entrypoint—namely, into the summed unit.

We now define a morphism f : ContractMorphism C C b with the following component functions.

1 Definition msg_morph_p (e : entrypoint) : entrypoint_b :=

2 match e with

3 | next _ => inr tt (* not upgrade functionality *)

4 | upgrade_fun s’ => inl (upgrade_fun_b s’) (* corresponds to an upgrade *)

5 end.

6 Definition state_morph_p : storage -> storage_b :=

7 (fun (x : storage) => {| s_b := x.(s) ; |}).

Listing 5.49: Two component functions of a morphism f : ContractMorphism C C b.

The component function state morph isolates the function s in storage, which is the data corresponding

to a contract’s version; msg morph sends a message to next to the unit, as it does not correspond to an

upgrade, and forwards an message to upgrade fun. The coherence results come easily by design—C b is

desined to simply be a compressed version of C. We will see later on that C b does in fact characterize the

immutable parts of C.

Let us now move to the mutable part of C, which we call the version contracts. This is the contract’s

functionality which stands apart from the upgradeability framework, which changes through upgrades.

Were it not implemented as an upgradeable contract, it could in principle be implemented as a standalone,

non-upgradeable contract. Indeed, any specific version of the upgradeable contract emulates a version

contract from within the upgradeability framework.

Example 5.5.2 (Family of Contract Embeddings). We continue with C from Example 5.5.1 which always

has some n : N and s next : N -> N in storage. Now we wish to define a family of contracts which

describes the functionality that is specific to any particular version of the contract.

Opposite to distilling the upgradeability skeleton as we did in Example 5.5.1, we isolate and embed the

functionality of a specific version of C. That is, we remove upgrade fun from the entrypoint type and s

from storage, using a (fixed) s next:N -> N when the next entrypoint is called.
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1 Inductive entrypoint_version := | next_f (u : unit).

2 Record storage_version := { n_f : N }.

Listing 5.50: The entrypoint and storage types of a version contract C f.

Any contract C f’ with these entrypoint and storage types can be called to update its internal natural

number in storage, but it is unable to upgrade in the sense that s next is fixed. Importantly, were we to

initialize C with s next and never call upgrade fun, then C and C f’ would be identical behaviorally.

Note further that the particular version that C f’ corresponds to is precisely the information in the

storage of our base contract C b. In fact, we can define a family of contracts which is parameterized by

inhabitants of the storage type of C b, consisting of contracts whose types are defined as follows.

1 Definition entrypoint_f : storage_b -> Type := fun v => entrypoint_version.

2 Definition storage_f : storage_b -> Type := fun v => storage_version.

3 Definition setup_f : storage_b -> Type := fun v => N.

4 Definition error_f : storage_b -> Type := fun v => N.

5 Definition result_f : storage_b -> Type :=

6 fun v => ResultMonad.result ((storage_f v) * list ActionBody) (error_f v).

Listing 5.51: A family of contract types parameterized by storage b.

In particular, for a version v : storage b, the receive function of each version contract uses the

function v.(s b) to execute the next entrypoint. The init function is simimlarly parameterized.

1 Definition receive_f (v : storage_b)

2 (_ : Chain)

3 (_ : ContractCallContext)

4 (storage_f : storage_f v)

5 (msg : option (entrypoint_f v))

6 : result_f v :=

7 match msg with

8 | Some (next_f _) =>

9 let st := {| n_f := v.(s_b) storage_f.(n_f) ; |} in

10 Ok (st, [])

11 | None => Err 0

12 end.

Listing 5.52: The receive function of C f version, parameterized by version : sotrage b

This gives us our family of version contracts as follows.

1 Definition C_f (v : storage_b) :

2 Contract (setup_f v) (entrypoint_f v) (storage_f v) (error_f v) :=

3 build_contract (init_f v) (receive_f v).

Listing 5.53: A family of version contracts, parameterized by storage b.
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We now construct a family of embeddings

fi param (v : storage b) : ContractMorphism (C f v)

whose component functions are defined as follows.

1 Definition msg_morph_i (v : storage_b) (e : entrypoint_f v) : entrypoint :=

2 match e with

3 | next_f _ => next tt

4 end.

5 Definition setup_morph_i (v : storage_b) (st_f : setup_f v) : setup := {|

6 n := st_f ;

7 s := s_b v ; |}.

8 Definition state_morph_i (v : storage_b) (st_f : storage_f v) : storage :=

9 {| n := st_f.(n_f) ; s := s_b v ; |}.

10 Definition error_morph_i (v : storage_b) : error_f v -> error := id.

Listing 5.54: The component functions of the family of morphisms fi param.

Intuitively, our family of morphisms shows us that any contract-reachable state of C can be characterized

as having a copy of some contract in the family C f, which stays constant until an upgrade is called.

By studying the structure of C, C b, and C f from Examples 5.5.1 and 5.5.2, one might be able to convince

one’s self that there is some sort of decomposition of C, characterized by C b and C f. Indeed, this is the

case. In the following section we present this first as an abstract theory, and then prove the decomposition

results for our contract C.

5.5.3 Decomposing Upgradeability

Generalizing from Examples 5.5.1 and 5.5.2, consider a contract C,

1 C : Contract Setup Msg State Error.

types Setup b, Msg b, State b, and Error b and a contract C b,

1 C_b : Contract Setup_b (Msg_b + unit) State_b Error_b.

and a family of contracts and types parameterized by State b.

1 setup_f : State_b -> Type.

2 msg_f : State_b -> Type.

3 state_f : State_b -> Type.

4 error_f : State_b -> Type.

5 C_f : forall (v : State_b), Contract (setup_f v) (msg_f v) (state_f v) (error_f v).

Listing 5.55: A family of contracts parameterized by State b.
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As before, we call C b the base contract and C f the family of version contracts. Furthermore, suppose

the following conditions hold.

First, that if C receives an empty message, it fails.

1 Definition msg_required := forall chain ctx prev_state,

2 exists e, receive C chain ctx prev_state None = Err e.

Listing 5.56: Condition 1: C returns an error if called with no message.

Second, that the init function gives versioned states according to the following predicate is versioned.

1 Definition is_versioned

2 (i_param : forall c_version, ContractMorphism (C_f c_version) C)

3 cstate :=

4 exists c_version cstate_f,

5 cstate = state_morph (C_f c_version) C (i_param c_version) cstate_f.

Listing 5.57: The predicate is versioned.

1 Definition init_versioned

2 (i_param : forall c_version, ContractMorphism (C_f c_version) C) :=

3 forall init_state chain ctx setup,

4 init C chain ctx setup = Ok init_state ->

5 is_versioned i_param init_state.

Listing 5.58: Condition 2: All initial states are versioned.

Third, that messages into C can be categorized as either a message to the base contract portion of C, or

to the current version contract portion of C. This is defined by the condition that a message is sent to the

unit under p if and only if it has a preimage under i.

1 Definition msg_decomposable

2 c_version

3 (i : ContractMorphism (C_f c_version) C)

4 (p : ContractMorphism C C_b) :=

5 forall m,

6 msg_morph C C_b p m = inr tt <->

7 (exists m’, m = msg_morph (C_f c_version) C i m’).

Listing 5.59: Condition 3: A message is sent to the unit under p if and only if it has a preimage under i.

Fourth, that all possible states of C can be categorized by the version that they belong to. This is defined

by the condition that a contract state has a preimage under i if and only if the version contract C f has

the version corresponding to the image under p.
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1 Definition states_categorized

2 c_version

3 (i : ContractMorphism (C_f c_version) C)

4 (p : ContractMorphism C C_b) :=

5 forall st,

6 (exists st_f, st = state_morph (C_f c_version) C i st_f) <->

7 state_morph C C_b p st = c_version.

Listing 5.60: Condition 4: A contract state has a preimage under i if and only if the version contract C f

has the version corresponding to the image under p.

Fifth and finally, that there are functions extract version and new version state wich describe how

upgrades move between contract versions. The extract version function takes a message to upgrade C

(in other words, an incoming message to C b under p) and extracts the version into which the message will

upgrade C. The new version state function takes the previous version old v and the upgrading message

msg, and sends an inhabitant of (state f old v), the storage type of the previous version contract, to

an an inhabitant of (state f (extract version msg)), the storage type of the next version contract.

As we will see, in the contracts from Examples 5.5.1 and 5.5.2, extract version simply uses the payload

of upgrade fun, a function, to get the version of the new contract, and since the storage type of all

version contracts is the same, the new version state function is simply the identity function.

1 Definition version_transition

2 old_v

3 (i_param : forall c_version, ContractMorphism (C_f c_version) C)

4 (p : ContractMorphism C C_b)

5 (extract_version : Msg_b -> State_b)

6 (new_version_state : forall old_v msg,

7 state_f old_v -> state_f (extract_version msg)) :=

8 forall cstate cstate_f,

9 (* forall states of version old_v *)

10 cstate = state_morph (C_f old_v) C (i_param old_v) cstate_f ->

11 (* and forall successful calls ... *)

12 forall chain ctx msg new_state new_acts msg’,

13 receive C chain ctx cstate (Some msg) = Ok (new_state, new_acts) ->

14 (* to upgrade the contract C ... *)

15 msg_morph C C_b p msg = inl msg’ ->

16 (* then the new state is the state given by new_version_state *)

17 let new_v := extract_version msg’ in

18 new_state =

19 state_morph (C_f new_v) C (i_param new_v) (new_version_state old_v msg’ cstate_f).

Listing 5.61: Condition 5: The functions extract version and new version state wich describe how

upgrades move between contract versions.

Then given contracts C and C b, a family of contracts C f, a family of embeddings i param of contracts

from C f into C, and a quotient p of C onto C b, C has an upgradeability decomposition into C b and C f
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if there are functions extract version and new version state such that the above-listed conditions

hold.

1 Definition upgradeability_decomposition

2 (i_param : forall c_version, ContractMorphism (C_f c_version) C)

3 (p : ContractMorphism C C_b)

4 (extract_version : Msg_b -> State_b)

5 (new_version_state : forall old_v msg,

6 state_f old_v -> state_f (extract_version msg)) :=

7 (* Forall versions of a contract C, *)

8 msg_required /\

9 init_versioned i_param /\

10 forall c_version,

11 let i := i_param c_version in

12 msg_decomposable c_version i p /\

13 states_categorized c_version i p /\

14 version_transition c_version i_param p extract_version new_version_state.

Listing 5.62: The definition of an upgradeability decomposition, which is a conjunction of all five conditions

listed above.

A proof of upgradeability decomposition C gives us two results which characterize the contract trace

of C in terms of its base and version contracts.

First, that all reachable states have a version, defined by the is versioned predicate from Listing 5.58.

1 Theorem versioned_invariant

2 (* Consider family of embeddings, and *)

3 (i_param : forall c_version, ContractMorphism (C_f c_version) C)

4 (* a projection onto the skeleton C_b. *)

5 (p : ContractMorphism C C_b)

6 (extract_version : Msg_b -> State_b)

7 (new_version_state : forall old_v msg,

8 state_f old_v -> state_f (extract_version msg)) :

9 (* Then forall reachable states ... *)

10 forall bstate caddr (trace : ChainTrace empty_state bstate),

11 (* where C is at caddr with state cstate, *)

12 env_contracts bstate caddr = Some (C : WeakContract) ->

13 exists (cstate : State),

14 contract_state bstate caddr = Some cstate /\

15 (* if the contract’s upgradeability can be decomposed *)

16 (upgradeability_decomposition i_param p extract_version new_version_state ->

17 (* then every contract state cstate is versioned *)

18 is_versioned i_param cstate).

Listing 5.63: All reachable states of an upgradeable contract are versioned.

Second, that if we have a contract C with upgradeability decomposition upgradeability decomposition,

then all incoming calls are either upgrades—a call to contract upgradeability, resulting in a new version—or
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correspond are calls to the current version contract, the version staying constant. Transitions from one

version to another result in a new state that is the image of the state of a new version contract.

1 Theorem upgradeability_decomposed

2 (* Consider family of embeddings, and *)

3 (i_param : forall c_version, ContractMorphism (C_f c_version) C)

4 (* a projection onto the base contract C_b. *)

5 (p : ContractMorphism C C_b)

6 (extract_version : Msg_b -> State_b)

7 (new_version_state : forall old_v msg,

8 state_f old_v -> state_f (extract_version msg)) :

9 (* forall contract states and corresponding contract versions, *)

10 forall cstate c_version cstate_f,

11 (* with i, the embedding for version c_version, ... *)

12 let i := i_param c_version in

13 (* if C_f -> C ->> C_b is the decomposition of a contract’s upgradeability ... *)

14 upgradeability_decomposition i_param p extract_version new_version_state ->

15 (* and cstate is in the image of cstate_f under the embedding i

16 (meaning that cstate has version c_version) ... *)

17 cstate = state_morph (C_f c_version) C i cstate_f ->

18 (* Then forall calls to the versioned contract *)

19 forall chain ctx m new_state new_acts,

20 receive C chain ctx cstate (Some m) = Ok (new_state, new_acts) ->

21 (* it either stays within this version *)

22 (exists cstate_f’, new_state = state_morph (C_f c_version) C i cstate_f’) \/

23 (* it moves onto a new version *)

24 (exists c_version’ cstate_f’,

25 new_state = state_morph (C_f c_version’) C (i_param c_version’) cstate_f’).

Listing 5.64: All contract calls to an upgradeable contract are either upgrades (to a new version) or stay

in the same version; transitions between versions behave as expected.

These two results show that all contract states are versioned by C f and C b, and then give precise

semantics of how the contract moves between version contracts in C f by calling the base contract C b.

Let us reflect on what these mean for our goal of formally characterizing contract upgradeability.

We’ve shown that our decomposition isolates the functionality relating to contract upgrades from the

functionality relating to each particular contract version, and that it accurately describes all contract

states and transitions between them. The definition of the family of version contracts is a precise definition

of the bounds of a contract’s upgradeability. And by isolating the governance features of contract upgrades

into the base contract, we are able to rigorously reason about any incentive, economic, or game-theoretic

aspects of the contract’s upgradeability.

Of course, upgradeable contracts are not typically specified in such a modular way, but as with the

Diamond framework [95], upgradeable contracts are typically specified as one, unified contract. We can

thus formulate the metaspecification of an upgradeable contract in terms of its base contract, with its
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associated governance features, and its version contracts, defining the structure common to every possible

contract version. The specification of an upgradeable contract is correct if it specifies a contract which

can be decomposed into the base and version contracts of the metaspecification.

Example 5.5.3 (Decomposing C). We conclude this section by continuing with Examples 5.5.1 and 5.5.2,

showing that C can be decomposed into the base contract C b and the family of version contracts C f. To

do so, we need functions extract version and new version state which describe how upgrades move

between version contracts.

Since versions of C are given by the function s in storage, the extract version function simply takes

the function from the message into the upgrade fun entrypoint.

1 Definition extract_version (m : entrypoint_b’) : storage_b :=

2 match m with | upgrade_fun_b s_b => {| s_b := s_b |} end.

Listing 5.65: The extract version function, which isolates the contract version resulting from a contract

call by taking the new function from the upgrade message payload.

The new version state function takes the state of a previous version contract to the state of a new

version contract. Since the sotrage types of all version contracts are the same for this particular family,

the function is constant.

1 Definition new_version_state old_v msg (st : storage_f old_v) :

2 storage_f (extract_version msg) := st.

Listing 5.66: The new version state function which takes the state of a previous version contract to

the state of a new version contract.

We have the following theorem, which says that C is decomposable with regards to C b and the quotient

f p, and the family of version contracts C f and embeddings fi param.

1 Theorem upgradeability_decomposition :

2 upgradeability_decomposition fi_param f_p extract_version new_version_state.

Listing 5.67: C is decomposable with regards to C b and the family of version contracts C f.

What does this tell us about C? We know that all reachable states of C are versioned, i.e. have an

embedding of a contract in the family C f which indicates its version. We also have precise semantics

of how the upgrades move between version contracts, via the function new version state, and we can

characterize all incoming messages as either upgrades, or calls to a particular version contract.
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5.5.4 Upgradeable Contracts are Fiber Bundles: A Digression

The decomposition of an upgradeable contract resembles a topological phenomenon called a fiber bundle.

Just as an upgradeable contract knits together its base contract with a family of version contracts, a fiber

bundle knits a topological space in with a family of topological spaces into one so-called total space [75].

Fiber bundles are hugely influential within mathematics, particularly in geometry and topology, and

have an extremely rich theory surrounding them. They are a tool used to understand topological spaces,

which are famously complex and mysterious mathematical objects. We point out an analogous structure

between topological spaces and smart contracts because smart contracts (and software more broadly) are

also complex mathematical objects, and understanding them is precisely the goal of formal verification.

For what follows, we assume basic knowledge about topological spaces and continuous maps; for an

introduction to topology, see e.g. Munkres’ introductory course [96].

First, recall that for a map of topological spaces f : X → Y , the fiber of f over y ∈ Y is the preimage

f−1(y), where f−1(y) := {x ∈ X|f(x) = y}.

Definition 5.5.1 (Fiber bundle). Consider topological spaces E and B. A continuous surjection

π : E → B is a fiber bundle if the following conditions hold:

1. For all b ∈ B, π−1(b) is homeomorphic to a fixed topological space F .

2. There is an open cover {Uα}α∈I of B with isomorphisms

ϕα : π−1(Uα)
∼−→ Uα × F

which restricts on fibers to a homeomorphism.

3. For α, β ∈ I, the composition ϕ−1
β ◦ ϕα : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F is well-defined and

satisfies

ϕ−1
β ◦ ϕα(x, v) = (x, gαβ(x)v)

for some Aut(F )-valued function gαβ : U ∪ V → Aut(F ).

4. These maps satisfy

gαα = Id and gαβ(x)gβγ(x)gγα(x) = Id.

The functions ϕ−1
β ◦ ϕα are called transition functions, E is called the total space, B is called the base

space, and F is called the fiber. Diagrammatically, a fiber bundle is often drawn as follows.

F E

B
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One can think of fiber bundles intuitively as a quotient, similar to a group quotient, where F takes on

the analogous role played by a normal subgroup in a group quotient.

Fiber bundles form a category, where maps of fiber bundles, which we simply call bundle maps, are

commuting squares

E E′

B B′,

(5.1)

where E → B and E′ → B′ are fiber bundles and all the maps are continuous. If we fix a base space B,

we can define a category of fiber bundles over B by defining morphisms to be commuting squares such as

(5.1) with the condition that the map on the bottom row be the identity map.

One important feature of fiber bundles is that they have the homotopy lifting property for all CW-

complexes. The function π : E → B has the homotopy lifting property with respect to a space X if, for

all homotopies

h : [0, 1]×X → B,

if there exists a map f0 : {0} × X → E such that π ◦ f0 = h|{0}×X , then there exists a homotopy

f : [0, 1]×X → E such that π ◦ f = h and f |{0}×X = f0. A fibration is a surjection π : E → B which

satisfies the homotopy lifting property with respect to any topological space.

If the lift is unique, one important corollary is that for points b, b′ ∈ B, a path from b to b′ induces a

function from the fiber of b to the fiber of b′: given x ∈ π−1(b), use the homotopy lifting property to lift

the path; the image of our function is the endpoint of that path in π−1(b′).

Example 5.5.4 (Trivial Bundle). For all topological spaces B and F , E := B × F is a fiber bundle over

B given by the obvious inclusion and projection functions.

Example 5.5.5 (Covering spaces). Let X be a topological space. A covering of X is a fiber bundle, with

X as the base space, such that the fibers of X are discrete topological spaces. Paths in a covering space

lift uniquely to paths in the covering space, yielding a function on fibers.

Example 5.5.6 (Möbius Bundle). Consider a Möbius band M defined by taking the space [0, 1]× [−1, 1]

and identifying (0, x) with (1,−x) for all x ∈ [−1, 1]. Similarly, construct a copy of S1 by taking [0, 1]

and identifying 0 with 1. We can define a function π : M → S1 given by (x, y) 7→ x. Then π is a fiber

bundle with fibers [−1, 1].

Some fiber bundles admit a section, which is a function s : B → E such that π ◦ s = id. Sections are

useful tools in analysis, topology, and differential geometry for a variety of reasons. Topologically, one

way to conceptualize the existence of a section is as an indicator of how “twisted” (or rather, untwisted)

a fiber bundle is. The trivial bundle, for example, has a section for every x ∈ F given by b 7→ (b, x), and

is considered to be the “least twisted” type of fiber bundle.
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Another example is the Möbius bundle M from Example 5.5.6. M has a section s : S1 → M given by

x 7→ (x, 0). However if we remove (x, 0) from every fiber, this gives us a fiber bundle M ′ with disconnected

fibers [−1, 0) ∪ (0, 1], which now admits no sections. This is because the Möbius band has a twist: if we

try to construct a section of S1 into M ′, e.g. by drawing a loop in M ′, no matter what we choose, after

one revolution around M ′ we’ve swapped sides in the fiber.

The analogy between fiber bundles and upgradeable contracts is as follows. We consider contracts as

analogous to topological spaces, where the points of the space are inhabitants of a contract’s storage. A

successful contract call alters the storage of the contract, and is thus a continuous path—which indicates

movement—within the contract.

Our decomposition of a contract into its base and version contracts

C fv C

C b

follows the analogy of a fiber bundle, where the version contracts are the fibers and the base contract is

the base space of the fiber bundle. That C f parameterizes all the fibers over the storage type of C b is

the analogue of a continuous parameterization of the fibers by the base space in E.

Some of the conditions of §5.5.3 also have an interpretation in the context of fiber bundles. Condition 2,

that all initial states are versioned, indicates that every initialization corresponds to the point in a fiber

of p. Condition 3, that messages are decomposable, means that a path in C is either a path that stays

within a fiber, meaning it is a call to a version contract C f v, or a path moves between fibers, meaning it

is a call to the base contract C b. Condition 4 is that C f v is precisely the fiber over v under p.

Condition 5 gives us the analogy with the path lifting property: a call to upgrade a contract, which

is a path within the base contract C b, lifts to a path in C which starts in the fiber C f prev v of the

previous version prev v and ends in the new fiber C f new v of the new contract version new v. The

path of an upgrade in C b is given by the extract version function, which isolates the new version from

an incoming upgrade call. Then new version state is our function between fibers, taking an inhabitant

of the state of the previous fiber contract to an inhabitant of the state of the new fiber contract.

Considering this analogy, we might ask if f p : ContractMorphism C C b admits a section. Recall

that in defining C b, we had to sum the entrypoint type entrypoint b’ with the unit in order to be

able to define the morphism from C to C b. This construction, which we call the pointed contract

construction, is a general construction on contracts: given a contract

C : Contract Setup Msg State Error,

we have a so-called pointed contract

pointed contract C : Contract Setup (Msg + unit) State Error
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which admits an extra entrypoint which succeeds when called, but does nothing to the state and emits no

actions. In particular, C b from our example is pointed contract C b’ for a contract C b’.

There is also a canonical embedding of C into pointed contract C for all C,

pointed include : ContractMorphism C (pointed contract C),

whose component functions are the identity apart from on the message type, where the component

function is (fun m => inl m).

We will then define a section of our fiber bundle analogue to be a morphism

fp rinv : ContractMorphism C b’ C

such that

compose cm f p (fp rinv n) = pointed include C b’.

As it turns out, we have such a section for the upgradeable contract of Example 5.5.3, defined by the

following component moprhisms.

1 Definition setup_morph_s n : setup_b -> setup :=

2 (fun (x : setup_b) => {| n := n ; s := x.(s_b) |}).

3 Definition msg_morph_s (e : entrypoint_b’) : entrypoint :=

4 match e with | upgrade_fun_b s’ => upgrade_fun s’ end.

5 Definition state_morph_s n : storage_b -> storage :=

6 (fun (x : storage_b) => {| n := n ; s := x.(s_b) ; |}).

7 Definition error_morph_s : error_b -> error := (fun (x : error_b) => x).

Listing 5.68: A right inverse of p from Example 5.5.3

Note in particular that setup morph s and state morph s are parameterized by a natural number n.

This is precisely what parameterizes p’: every inhabitant of the storage of C b can be canonically lifted

to an inhabitant of its fiber by simply inserting n as the natural number in storage. Thus we have a

family of sections parameterized by n : N.

1 Definition fp_rinv (n : N) : ContractMorphism C_b’ C.

And we can prove that for all n, fp rinv n is a section of our fiber bundle.

1 Theorem p_rinv_section (n : N) : compose_cm f_p (fp_rinv n) = pointed_include C_b’.

This family of sections is remeniscent of the sections of the trivial bundle we saw before, which were

given by b 7→ (b, x) for x ∈ F . Because our fibers here are not isomorphic contracts, we do not have a

decomposition of C as a product of C b and some fixed C f’. Even so, the family of sections indicates

that C is a simple analogue of a product of contracts, which seems appropriate on reflection as C clearly

separates the upgrade functionality from that corresponding to each contract version.
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5.5.5 Summary

Let us reflect on the motivating example for this section, the Diamond upgrade framework of §5.1.1.

Our main observation was that the specification uses diagrams and analogies to a diamond in order to

communicate the different components of the upgradeable contract’s functionality. The parts of the

specification which deal with the process of adding or removing a facet are a description of the Diamond

standard’s base contract—the functionality governing how the contract can be changed. The parts of the

specification which describe the structure the contract as a diamond, having many facets, describes the

version contracts—the structure common to all possible versions of a Diamond contract.

Of course, producing an actual decomposition of the Diamond standard would likely be highly nontrivial.

Instead, we would take the approach of writing the specification of an upgradeable contract explicitly in

terms of its base and version contracts. Any implementation conscious of the required decomposition can

then be crafted in such a way that the decomposition, using contract morphisms, yields itself easily.

5.6 Conclusion

Our goal in this chapter was to develop formal tools to evaluate the correctness of a specification of an

individual contract upgrade or an upgradeable contract. This is because contract upgrades have nontrivial

meta properties which can make correct specification of individual upgrades, as well as upgradeable

contracts, a nontrivial endeavor. We argued that correct specification of contract upgradeability has at

least two components, both of which we addressed with contract morphisms.

The first component is that in an upgrade, whether by a hard fork or within an upgradeable contract, the

specification of the upgraded contract is typically written with the intention to relate to the specification

of a previous version in some way. One can thus evaluate the correctness of the specification of an upgrade

if one is able to formally express that intended relationship.

To address this component, we illustrated how contract morphisms can be used to clearly specify the

intention of upgrades, by specifying properties of upgrades such as backwards compatibility. In particular,

we revisited a major attack on a faulty contract upgrade, giving a simple metaspecification of the intended

upgrade which clearly exposes the vulnerability. We also showed how one can prove Hoare-like properties

of one contract using those of another.

The second component is that upgradeable contracts are difficult to specify with a prose specification

because an upgradeable contract encodes the logic of two separate contracts—one that governs upgrades,

and one that represents the contract’s version at any given state. The relationship between these two

contracts is complex, so to evaluate the correctness of a specification of an upgradeable contract we need

some formal way to decompose it into its mutable and immutable parts.
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Using contract morphisms we gave a formal and general decomposition of an upgradeable contract

into a base contract and a family of version contracts. This rigorously and precisely articulates what

it means for the contract to be upgradeable, including what the semantics of upgrades are, and it

completely characterizes the forms that contract upgrades can take. Furthermore, there is a strong

mathematical analogue to fiber bundles, a tool used in topology and geometry to understand the structure

of a topological space in terms of a decomposition into a base space and a family of fibers.

By addressing both of these components with contract morphisms, we have a rigorous, mathematical

treatment of upgradeability. This can help address vulnerabilities in contract upgrades by evaluating the

correctness of specifications of individual contract upgrades, as well as upgradeable contracts generally.
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Chapter 6

Contract Systems

The meta properties that we target in this chapter are those relating to the behavior of a system of

contracts, taken as a whole. As we saw in §1.2.3, poorly specified systems of contracts can be vulnerable to

extremely costly attacks. In this chapter we rigorously develop the notion of a specification’s correctness

as it relates to how the system of contracts behaves when taken as a whole.

To this end, we develop various notions of equivalences of contracts so that we can understand the

specification of a system of contracts in terms of a monolithic contract, bisimilar to the system. This

will allow us to to distinguish the specification of a system’s infrastructure—a description of when and

with what payload contracts in the system call each other—from the specification of its core, intended

functionality when considering the contract system as a whole.

We proceed as follows. In §6.1, we motivate contract and system bisimulations by discussing the problem

of specifying contract systems. In §6.2, we introduce the notion of a contract bisimulation as a precursor

to a bisimulation of contract systems, and show that isomorphic contracts are also bisimilar. In §6.3, we

formally define the notion of contract systems, using Milner’s bigraphs [94] as our data type, to isolate the

specification of the system infrastructure from its core functionality. In §6.4, we introduce bisimulations of

contract systems. In §6.5, we conclude. Each section contains various code snippets; Appendix C mirrors

section headings and gives a more complete version of the code from which the snippets are taken.

6.1 Contracts Systems

Financial smart contracts are ubiquitously implemented as modular systems of contracts rather than as

monolithic contracts. One reason for this is purely practical. A blockchain is a highly resource-constrained

platform on which to write programs due to gas fees, which are paid by the user [148]. Depending on

the contract, it can be more gas-efficient to implement modularly, for example to prevent the storage of
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a contract from getting too large and thus expensive to access. In this case, implementing a contract

modularly is an optimization technique.

Other reasons are more endemic. Systems of contracts are ubiquitous in financial smart contracts because

new applications frequently build off of existing ones [130]. Indeed, one of the strenghts of smart contracts

is that they are composable—so much so that decentralized finance is colloquially referred to as “money

legos” [130], which refers to building new DeFi protocols by composing existing ones as if with lego bricks.

Recall for example that the implementation of Dexter2—indeed, that of any AMM—features a main,

trading contract, and a secondary LP token contract [102]. The functionality of the main contract

depends on that of the token contract, and conversely the token contract depends on the main trading

contract. Furthermore, Dexter2 facilitates trading between a diversity of tokens, each of which has

its own tokenomics (rules governing minting, burning, and distribution) and are themselves contracts

independent from the AMM. One previously mentioned example of the ensuing complexity is that

governance tokens—tokens that give the holder governance rights over an upgradeable contract or a

DAO—can be traded on AMMs. In the exploit mentioned in §1.2.1, the Beanstalk attacker first traded

for governance tokens on an AMM before executing flash loan attack (via yet another contract), winning

a majority governance vote and draining the Beanstalk contract of its funds.

The examples continue. Yield aggregators like Harvest or Yearn [41] optimize over a set of existing DeFi

protocols so that users can maximize yield farming. DEX aggregators like 1inch or Matcha minimize

trading fees over various DEXs. Synthetics, including stablecoins like DAI, rely on price oracles to manage

their tokenomics and maintain their peg [129]. CREAM, the multi-purpose DeFi protocol of §1.2.3, relies

intimately on a whole web of contracts across multiple chains to offer its financial services.

In each of these examples, contract security and even correctness depends intimately on the accumulated

and interconnected behavior of many interacting contracts [130]. Because of the overwhelming prevalence

of contract systems, the very endeavor of smart contract verification can be rendered inept if we don’t have

robust language to specify and reason about contract systems. Famously, however, contract composability

is a source of extraordinary complexity in formal reasoning [103, 130].

6.1.1 Specifying Contract Systems

We focus on the complexity introduced to formal specification by contract composability. Consider what

is needed to specify of a system of contracts. As well as specifying each individual contract in the system,

we must inevitably specify when and with what payload contracts in the system call each other. From

these specifications one must deduce, either by intuition or by other means, the intended behavior of the

system of contracts when taken as a whole, or considering it as a single process.

We argue that specifying a system of contracts in this way is difficult to do correctly because the details

of inter-contract communication can obfuscate the actual intended behavior of the system specification.
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Recall the specification of the Diamond standard [95] from Chapter 5. The core, intended functionality

is illustrated by pictures and naming conventions (e.g. facets, diamonds, loupes), precisely because the

specification alone has many moving parts and is difficult to understand. If it were possible to somehow

separate the specification of system infrastructure, including inter-contract communication, from that of

the contract’s core, desired functionality, the specification would likely be much easier to understand.

There is more at work here. One can see conceptually that the intended behavior of a contract system is

generally articulated in terms of one, coherent process, which is agnostic to whether and how the system

is modularized, or whether it is monolithic. Indeed one can imagine various implementations of a given

specification, where some are modular and some are monolithic, but one has an intuitive notion that as

long as the contracts of a given implementation behave together, coherently, according to the specification,

that implementation is correct.

We make this rigorous by introducing formal tools to reduce the modular system of contracts to a

monolithic contract, by way of a process algebra, such that the modular and monolithic contracts are

bisimilar. We can then reason about our system in terms of that single contract. By using Milner’s

bigraphs [94] as our data type for contract systems, we can isolate the system infrastructure, allowing us

to separate the specification of the interacting system from the specification of the core, desired contract

behavior. From there, we have tools already at our disposal from previous chapters to rigorously specify

and reason about the desired core contract behavior.

There are other reasons for which we may wish to consider contract bisimilarity. Consider the problem

of specifying and verifying a contract which is highly optimized for performance. Performant code is

frequently difficult to read, much less reason about—and conversely, contracts optimized for formal

reasoning are seldom optimized for performance. Thus a contract on which it is feasible to articulate and

verify meta properties might be too inefficient (and thus expensive) to feasibly deploy. In this scenario, we

may wish to verify a contract optimized for formal reasoning, and then perform bisimulation-preserving

optimizations on the verified contract before deploying it.

6.1.2 Related Work

While applying process-algebraic techniques to formal reasoning about smart contracts is still a relatively

new practice, there is related work that reasons about systems of contracts and that draws in various

ways on process-algebraic techniques.

One example is Tolmach et al.’s work on the formal analysis of composable DeFi protocols [130]. Tolmach

et al. formulate a process-algebraic model of DEXs and tokens, abstracting each as primitives. These are

used to analyze the behavior of contract systems by formally abstracting contract interactions and then

using a model-checker to verify correctness properties. All of the correctness properties are properties of

one or more components of the system.
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Another example is 20squares, a smart contract auditing firm that uses compositional game theory [64]

to analyze the economic properties of the specification of a composable set of Ethereum-based smart

contracts. They are able to ask certain game-theoretic questions about contract specifications, such as

how much certain agents have to be bribed to deviate from intended behavior [1]. In particular, they

address system complexity by composing games which represent individual contracts, and studying the

resulting incentives.

Finally, Madl et al. [86] reason about contract systems using interface automata, which is a formal way

of specifying interactions and synchronization of input and output actions within a system.

Each of these examples takes a specification of a modular system and uses tools to reason in a composable

manner over that system. Our contrasting approach is to separate the specification of the system

infrastructure from that of the core functionality, which removes the complexity of the contract system

before we formally reason about it. We do so by formally developing the notion of contract and system

bisimulations, allowing us to consider contract specifications that are agnostic to whether or not, or how,

the implementation is modularized.

6.2 Bisimulations of Contracts

The essential goal of this chapter is to formally define bisimulations of contract systems, but as a precursor

our first task is to formally introduce bisimulations of individual contracts. As we will see, contract

bisimulations extend naturally into bisimulations of contract systems. They are also a generalization of

contract isomorphisms, which we saw briefly in Chapter 5.

6.2.1 Contract Trace Morphism

Recall from §5.3.1 that a contract’s trace is a chained list of contract steps, where contract steps are the

data for a successful call to the receive function. We restate the formal definitions of each here.

1 Record ContractStep (C : Contract Setup Msg State Error)

2 (prev_cstate : State) (next_cstate : State) :=

3 build_contract_step {

4 seq_chain : Chain ;

5 seq_ctx : ContractCallContext ;

6 seq_msg : option Msg ;

7 seq_new_acts : list ActionBody ;

8 (* we can call receive successfully *)

9 recv_some_step :

10 receive C seq_chain seq_ctx prev_cstate seq_msg = Ok (next_cstate, seq_new_acts) ;

11 }.

Listing 6.1: Contract steps are successful calls to the receive function.
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1 Definition ContractTrace (C : Contract Setup Msg State Error) :=

2 ChainedList State (ContractStep C).

Listing 6.2: A contract’s trace is a chained list of contract states, linked together by contract steps.

A contract trace morphism, similar to a contract morphism, encodes a formal, structural relationship

between the traces of two contracts. Like contract morphisms, a contract trace morphism features

a function between contract storage types. However, unlike contract morphisms, which also features

functions between message, error, and setup types, a contract trace morphism simply requires that the

function between state types send intial states to inital states, and that for any two states connected by a

step of the first contract, the corresponding states be also connected by a step in the second contract.

More concretely, for contracts

C1:Contract Setup1 Msg1 State1 Error1 and C2:Contract Setup2 Msg2 State2 Error2,

a morphism of contract traces includes the following data:

• A function ct state morph : State1 -> State2

• A proof that if there are inputs to the init function of C1 that result in an initialized state

init state, then there are inputs to the init function of C2 that result in a corresponding

initialized state (ct state morph init state)

• For states state1 and state2, and any step forward of C1,

step1 : ContractStep C1 state1 state2,

we have a corresponding step forward of C2 between the analogous states

step2 : ContractStep C2 (ct state morph state1) (ct state morph state2)

1 Record ContractTraceMorphism

2 (C1 : Contract Setup1 Msg1 State1 Error1)

3 (C2 : Contract Setup2 Msg2 State2 Error2) :=

4 build_ct_morph {

5 (* a function of state types *)

6 ct_state_morph : State1 -> State2 ;

7 (* init state C1 -> init state C2 *)

8 genesis_fixpoint : forall init_cstate,

9 is_genesis_cstate C1 init_cstate ->

10 is_genesis_cstate C2 (ct_state_morph init_cstate) ;

11 (* coherence *)

12 cstep_morph : forall state1 state2,

13 ContractStep C1 state1 state2 ->

14 ContractStep C2 (ct_state_morph state1) (ct_state_morph state2) ;

15 }.

Listing 6.3: The formal definition of a morphism of contract traces.
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Inductively, this gives us a relationship between reachable states: initial states of each contract are related

via the function between state types, and from there, for any step of the first contract there is a related

step of the second contract that respects the function on states.

Example 6.2.1 (The Identity Contract Trace Morphism). One important contract trace morphism is

the identity morphism id ctm, which is defined for every contract C and inhabits the type

ContractTraceMorphism C C.

This is analogous to the identity morphism of Example 5.2.2. We give the formal definition here.

1 Definition id_ctm (C : Contract Setup1 Msg1 State1 Error1) :

2 ContractTraceMorphism C C := {|

3 ct_state_morph := id ;

4 genesis_fixpoint := id_genesis_fixpoint C ;

5 cstep_morph := id_cstep_morph C ;

6 |}.

Listing 6.4: The identity contract trace morphism ic ctm C defined for any contract C.

The definition relies on a lemma, id genesis fixpoint C, and a function, id cstep morph C, which

are both defined trivially.

1 Definition id_genesis_fixpoint (C : Contract Setup1 Msg1 State1 Error1)

2 init_cstate (gen_C : is_genesis_cstate C init_cstate) :

3 is_genesis_cstate C (id init_cstate) :=

4 gen_C.

Listing 6.5: The genesis fixpoint result for the identity contract trace morphism.

1 Definition id_cstep_morph (C : Contract Setup1 Msg1 State1 Error1)

2 state1 state2 (step : ContractStep C state1 state2) :

3 ContractStep C (id state1) (id state2) :=

4 step.

Listing 6.6: The step result for the identity contract trace morphism.

Example 6.2.2 (Equality of Contract Trace Morphisms). Given two contract trace morphisms

f g : ContractTraceMorphism C1 C2,

like with contract morphisms we may ask ourselves whether or not they are equal.

Because of the dependent nature of the definition of contract trace morphisms, this definition is not quite

as straightforward as equality of contract morphisms (Example 5.2.4). We must first assume equality

of each state morphisms, and then we can state the (weaker) equality result, which states that we have

equality of contract trace morphisms if the two functions between contract steps are equal.
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1 Lemma eq_ctm_dep

2 (C1 : Contract Setup1 Msg1 State1 Error1)

3 (C2 : Contract Setup2 Msg2 State2 Error2)

4 (* one single state morphism *)

5 (ct_st_m : State1 -> State2)

6 (gen_fix1 gen_fix2 : forall init_cstate,

7 is_genesis_cstate C1 init_cstate ->

8 is_genesis_cstate C2 (ct_st_m init_cstate))

9 (cstep_m1 cstep_m2 : forall state1 state2,

10 ContractStep C1 state1 state2 ->

11 ContractStep C2 (ct_st_m state1) (ct_st_m state2)) :

12 (* if the step morphisms are equal ... *)

13 cstep_m1 = cstep_m2 ->

14 (* then the contract trace morphisms are equal *)

15 {| ct_state_morph := ct_st_m ;

16 genesis_fixpoint := gen_fix1 ;

17 cstep_morph := cstep_m1 ; |}

18 =

19 {| ct_state_morph := ct_st_m ;

20 genesis_fixpoint := gen_fix2 ;

21 cstep_morph := cstep_m2 ; |}.

Listing 6.7: Equality of contract trace morphisms.

Of course, a more sophisticated formulation of equality would transport over an equality of state morphisms,

though we leave that for future work.

Example 6.2.3 (Contract Trace Morphism Composition). Like contract morphisms, contract trace

morphisms can be composed. Similar to the composition of contract morphisms (§5.2.1), we define

composition via a function compose ctm, which takes morphisms

f : ContractTraceMorphism C1 C2 and g : ContractTraceMorphism C2 C3

and returns a morphism

compose ctm g f : ContractTraceMorphism C1 C3.

To compose contract morphisms, we simply compose their component functions.

1 Definition compose_ctm

2 (m2 : ContractTraceMorphism C2 C3)

3 (m1 : ContractTraceMorphism C1 C2) :

4 ContractTraceMorphism C1 C3 :=

5 {|

6 ct_state_morph := compose (ct_state_morph C2 C3 m2) (ct_state_morph C1 C2 m1) ;

7 genesis_fixpoint := genesis_compose m2 m1 ;

8 cstep_morph := cstep_compose m2 m1 ;

9 |}.

Listing 6.8: Composition of CT Morphisms.
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This relies on two functions: genesis compose and cstep compose. However, since genesis fixpoint

is a simple implication and cstep morph is a function, these simply compose each component.

1 Definition genesis_compose

2 (m2 : ContractTraceMorphism C2 C3) (m1 : ContractTraceMorphism C1 C2) :

3 forall init_cstate,

4 is_genesis_state C1 init_cstate ->

5 is_genesis_state C3

6 (compose (ct_state_morph C2 C3 m2) (ct_state_morph C1 C2 m1) init_cstate).

Listing 6.9: The function genesis compose

1 Definition cstep_compose

2 (m2 : ContractTraceMorphism C2 C3) (m1 : ContractTraceMorphism C1 C2) :

3 forall state1 state2,

4 ContractStep C1 state1 state2 ->

5 ContractStep C3

6 (compose (ct_state_morph C2 C3 m2) (ct_state_morph C1 C2 m1) state1)

7 (compose (ct_state_morph C2 C3 m2) (ct_state_morph C1 C2 m1) state2).

Listing 6.10: The function cstep compose.

That composition is associative comes trivially.

1 Lemma compose_ctm_assoc

2 (f : ContractTraceMorphism C1 C2)

3 (g : ContractTraceMorphism C2 C3)

4 (h : ContractTraceMorphism C3 C4) :

5 compose_ctm h (compose_ctm g f) =

6 compose_ctm (compose_ctm h g) f.

Listing 6.11: Composition of CT morphisms is associative.

Similarly, it comes immediately that composition on either side with the identity is a trivial operation.

1 Lemma compose_id_ctm_left (f : ContractTraceMorphism C1 C2) :

2 compose_ctm (id_ctm C2) f = f.

3

4 Lemma compose_id_ctm_right (f : ContractTraceMorphism C1 C2) :

5 compose_ctm f (id_ctm C1) = f.

Listing 6.12: Composition with the identity does nothing.

6.2.2 The Lifting Theorem

Our first result about contract trace morphisms is that contract morphisms carry all the information

needed to define a contract trace morphism. Indeed, the coherence components of a contract morphism
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are simply stronger versions of the components of a contract trace morphism. We say that a contract

morphism lifts to a contract trace morphism, and we prove this via a lifting theorem.

We prove this result by defining a function cm lift ctm, which takes a contract morphism

f : ContractMorphism C1 C2

and returns a contract trace morphism

cm lift ctm f : ContractTraceMorphism C1 C2,

which we define formally here.

1 Definition cm_lift_ctm (f : ContractMorphism C1 C2) : ContractTraceMorphism C1 C2 :=

2 {|

3 ct_state_morph := state_morph _ _ f ; (* use the state morph of f *)

4 genesis_fixpoint := lift_genesis f ; (* from f’s init coherence *)

5 cstep_morph := lift_cstep_morph f ; (* from f’s recv coherence *)

6 |}.

Listing 6.13: Contract morphisms lift to contract trace morphisms.

As we can see in the definition, we use the function of contract states

state morph f

from the contract morphism f to define the contract trace morphism.

We then use the init and receive coherence results of f to, respectively, prove the genesis fixpoint result

and the contract step result. These are each proved and stated, respectively, as functions lift genesis

and lift cstep morph.

1 Definition lift_genesis (f : ContractMorphism C1 C2) :

2 forall init_cstate,

3 is_genesis_state C1 init_cstate ->

4 is_genesis_state C2 (state_morph C1 C2 f init_cstate).

Listing 6.14: Using init coherence from f, we prove the genesis fixpoint result.

1 Definition lift_cstep_morph (f : ContractMorphism C1 C2) :

2 forall state1 state2,

3 ContractStep C1 state1 state2 ->

4 ContractStep C2

5 (state_morph C1 C2 f state1)

6 (state_morph C1 C2 f state2).

Listing 6.15: Using receive coherence from f, we prove the contract step result.

Importantly, the identity contract morphism lifts to the identity contract trace morphism, and compositions

of contract morphisms lift to compositions of contract trace morphisms. This will give us that isomorphic

contracts are also bisimilar.
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1 Theorem cm_lift_ctm_id :

2 cm_lift_ctm (id_cm C1) = id_ctm C1.

Listing 6.16: Identity lifts to identity.

1 Theorem cm_lift_ctm_compose

2 (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

3 cm_lift_ctm (compose_cm g f) = (* lifting the composition = ... *)

4 compose_ctm (cm_lift_ctm g) (cm_lift_ctm f). (* composing the lifts *)

Listing 6.17: Compositions lift to compositions.

6.2.3 Contract Bisimulations

Our analogue to a contract isomorphism (Example 5.2.7) is now a contract bisimulation, or a contract

trace isomorphism. A pair of contract trace morphisms form an isomorphism if they compose each way

to the identity.

1 (** A bisimulation of contracts, or an isomorphism of contract traces *)

2 Definition is_iso_ctm

3 (m1 : ContractTraceMorphism C1 C2) (m2 : ContractTraceMorphism C2 C1) :=

4 compose_ctm m2 m1 = id_ctm C1 /\

5 compose_ctm m1 m2 = id_ctm C2.

Listing 6.18: Formal definition of a bisimulation of contracts.

Let us briefly reflect on this as a definition of a bisimulation. Bisimilarity is a stable and mathematically

natural concept formulated to capture the notion of equivalence between processes [71, 117].

Consider a labelled transition system (S,Λ,→), where S is a set of states, Λ is a set of labels, and →

is a set of labelled transitions (a subset of S × Λ × S). Recall that a bisimulation is a binary relation

R ⊆ S × S such that for every pair of states (p, q) ∈ R and labels α, β ∈ Λ,

• if p
α−→ p′, then there is q

β−→ q′ such that (p′, q′) ∈ R

• if q
β−→ q′, then there is p

α−→ p′ such that (p′, q′) ∈ R.

We can see that our formal definition of a bisimulation in Listing 6.18 achieves precisely this correspondence,

as it gives a one-to-one correspondence on contract states and transitions such that corresponding

transitions move between corresponding states.

With this definition in hand we can show an important corollary of the lifting theorem. Contract

isomorphisms lift to contract bisimulations, due simply to the fact that the identity lifts to the identity,

and compositions lift to compositions.
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1 Corollary ciso_to_ctiso (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1) :

2 is_iso_cm f g -> is_iso_ctm (cm_lift_ctm f) (cm_lift_ctm g).

Listing 6.19: Contract isomorphisms induce bisimulations of contracts.

We summarize with the bisimilarity predicate on contract pairs.

1 Definition contracts_bisimilar

2 (C1 : Contract Setup1 Msg1 State1 Error1)

3 (C2 : Contract Setup2 Msg2 State2 Error2) :=

4 exists (f : ContractTraceMorphism C1 C2) (g : ContractTraceMorphism C2 C1),

5 is_iso_ctm f g.

Listing 6.20: The bisimilarity predicate on contract pairs.

Finally, we point out that bisimilarity is an equivalence relation. We prove this with three results:

Reflexivity,

1 Lemma bisim_refl C : contracts_bisimilar C C.

symmetry,

1 Lemma bisim_sym C1 C2 :

2 contracts_bisimilar C1 C2 ->

3 contracts_bisimilar C2 C1.

and transitivity.

1 Lemma bisim_trans C1 C2 C3 :

2 contracts_bisimilar C1 C2 /\ contracts_bisimilar C2 C3 ->

3 contracts_bisimilar C1 C3.

6.2.4 Discussion: Propositional Indistinguishability

Contract bisimulations indicate a strong structural correspondence between bisimilar contracts. In

particular, they require an isomorphism of contract states which is preserved under contract steps. This

tells us that state invariants which are also invariant under the state isomorphism of the bisimulation

carry over that bisimulation.

Example 6.2.4 (Propositional Indistinguishability). Consider contracts C1 and C2, and suppose that we

have morphisms

m1 : ContractTraceMorphism C1 C2 and m2 : ContractTraceMorphism C2 C1

which form a bisimulation of contracts, i.e. we have a witness
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C1 C2 bisim : is iso ctm m1 m2.

Assume that both state types, State1 and State2, have a constant in storage, which we have access to

via functions

const in stor C1 : State1 -> nat and const in stor C2 : State2 -> nat.

Furthermore, suppose that constant is invariant over the state morphism components of m1, meaning

that for all st : State1,

const in stor C1 st = const in stor C2 (ct state morph C1 C2 m1 st).

Finally, suppose that C1 has an invariant relating to this constant, e.g. that for all contract-reachable

states,

const in stor C1 st > 0.

Using the bisimulation of contracts, we can prove that the same invariant holds with the following

theorem:

Theorem 6.2.1. For all reachable chain states bstate with C2 deployed at an address caddr with state

cstate, the inequality const in stor C2 cstate > 0 holds.

1 Theorem invariant_C2 bstate caddr (trace : ChainTrace empty_state bstate):

2 (* Forall reachable states with contract at caddr, *)

3 env_contracts bstate caddr = Some (C2 : WeakContract) ->

4 (* such that cstate is the state of the contract, *)

5 exists (cstate : State2),

6 contract_state bstate caddr = Some cstate /\

7 (* the constant in storage is > 0 *)

8 (const_in_stor_C2 cstate > 0)%nat.

Listing 6.21: caption text

We prove this by contract induction—since every initial state of C2 corresponds to an initial state of C1

under the state isomorphism of the bisimulation, and all steps of C1 correspond to isomorphic steps of C2,

at each step of contract induction we can take advantage of the bisimulation and the state isomorphism

to prove our invariant.

Of course, contracts can be bisimilar but not identical, so it will not likely be true that any proposition

holding for one holds for the other. Even so, this example is an illustration toward understanding the

degree to which bisimilar contracts are propositionally indistinguishable. We leave any further, formal

analysis of the degree to which bisimilar contracts are also propositionally indistinguishabile to future

work.
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6.3 Contract Systems as Bigraphs

With bisimulations of contracts formally defined, we now move on to consider contract systems. Our goal

will be to represent a system of interacting contracts as a single process in ConCert, which we can then

specify and reason about as a single entity. The corresponding notions of bisimilarity will build off of

what we have just seen.

To do so, we require a data type in which to represent systems of contracts, as well as a formal way

to separate the specification of a contract system’s infrastructure—a specification of which contracts

pass messages to which other contracts, and when—from the specification of its core functionality when

considering the contracts as a whole. The data type that we will use is a bigraph, which we define in the

following section.

6.3.1 Bigraphs

We give a very brief introduction to bigraphs here and direct the reader to some of Milner’s earlier

writings [93, 94] for a full exposition. A bigraph is a universal mathematical model for representing the

spatial configuration of physical or virtual objects, their interaction capabilities, and temporal evolution

[120]. A bigraph consists of a set of nodes, denoting processes, and defines two independent structures on

those nodes, which are:

• The place graph, a directed forest representing a spacial or nesting relationship between nodes

• The link graph, a hypergraph representing interactions between nodes.

Bigraphs have been the subject of both theoretical and practical work to reason about systems of processes

[119, 120, 88]. Because they facilitate generic, process-algebraic approaches to reasoning about smart

contracts, we will use bigraphs as a data type here in which to encode contract systems, treating individual

contracts as nodes. We proceed to formalize the place graph and discuss the link graph.

6.3.2 The Place Graph

The place graph of a contract system indicates a nesting or hierarchical structure within the contract

system. We argue that this is a natural way to conceptualize contract systems, and thus a natural data

type for contract systems as opposed to e.g. lists.

Consider an AMM, one of our most basic and important financial smart contracts, which facilitates trades

between token contracts. Conceptually, we might think of token contracts being nested inside of the

process of the AMM. From the AMM’s perspective, the interface to interacting with the tokens is the

trading contract; the trading contract then propogates transactions into its nested processes when it
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t

t1 t2 t3

... ... ... ...

Figure 6.1: A visualization of the place graph Node t [t1 ; t2 ; t3]. Nodes t1 and t3 have further
child n-trees, while t2 is a leaf.

executes trades. This lends intuition to understanding how the system works, which is a good thing, but

it may have practical applications as well. If one models multiple AMMs on the same blockchain, one can

see visually how these AMMs interact with each other by where their place graphs intersect—along token

or other contracts.

Other contract systems that we might consider include yield aggregators, like Harvest Finance or other

one-stop-shop DeFi protocols like CREAM, both from the exploits of §1.2.3. Yield and DEX aggregators

have an interface contract, and then try to optimize whatever operation they do—whether that is looking

for highest yield pools or best price for trades. In both cases, the interface contract can be thought of as

the root node of the place graph, and the processes across which it tries to optimize can be thought of as

nested within that node. A similar argument goes for one-stop-shop DeFi protocols such as CREAM,

which provide a single, united interface that builds off of other DeFi protocols by forwarding messages.

The interface contract has nested within it the contracts that form its backend.

Finally, thinking of DeFi more broadly as a set of highly interconnected financial contracts, dubbed

“money legos,” a new DeFi contract that builds off of previous contracts can be visualized as having those

contracts on which it builds nested within the new contract.

With all this in mind, we proceed to define an inductive data structure for contract systems, where

contracts are nodes. We first give a formal definition of an n-ary tree, or n-tree, over an arbitrary type T.

1 Inductive ntree (T : Type) : Type :=

2 | Node : T -> list (ntree T) -> ntree T.

Listing 6.22: The formal definition of an n-tree.

For example, an n-tree of the form

Node t [t1 ; t2 ; t3]

is a node inhabited by t : T, and has three child trees t1, t2, and t3, each of which can have any

number of their own child trees. We call the node t the root. See Figure 6.1.

1 Definition ContractPlaceGraph (Setup Msg State Error : Type) :=

2 ntree (Contract Setup Msg State Error).

Listing 6.23: The formal definition of a contract system via its place graph.
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A contract system’s place graph is then simply defined to be an n-tree whose nodes are contracts. Of course,

this formal definition is of a homogeneous tree, only allowing for nodes to be contracts parameterized by

the same four types. In practice, systems of contracts are not homogeneous, but we will show presently

how to construct a homogeneous system from a heterogeneous one.

Once defined, a contract system

sys : ContractPlaceGraph Setup Msg State Error

can be initialized and called, like a contract, but with custom init and receive functions sys init

and sys receive. To initialize a system, we initialize the root contract with some data s : Setup. If

successful, this returns a state st : State, which we call the state of the system.

1 Definition sys_init

2 (sys : ContractPlaceGraph Setup Msg State Error)

3 (c : Chain)

4 (ctx : ContractCallContext)

5 (s : Setup) : result State Error :=

6 match sys with

7 | Node _ root_contract _ =>

8 init root_contract c ctx s

9 end.

Listing 6.24: System initialization.

Then to call a system, we give it a state st : State and an optional message op msg : option Msg

and, if successful, it returns an updated state and a list of emitted actions.

1 Definition sys_receive

2 (sys : ContractPlaceGraph Setup Msg State Error)

3 (c : Chain)

4 (ctx : ContractCallContext)

5 (st : State)

6 (op_msg : option Msg) : result (State * list ActionBody) Error :=

7 ntree_fold_left

8 (fun (recv_propogate : result (State * list ActionBody) Error)

9 (contr : Contract Setup Msg State Error) =>

10 match recv_propogate with

11 | Ok (st0, lacts0) =>

12 match receive contr c ctx st0 op_msg with

13 | Ok (st1, lacts1) => Ok (st1, lacts0 ++ lacts1)

14 | Err e => Err e

15 end

16 | Err e => Err e

17 end)

18 sys

19 (Ok (st, nil)).

Listing 6.25: Calls to a contract system are governed by the sys receive function.
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The sys receive function iteratively calls every contract in the system with the given message. Each

call either returns an updated state or an error, and we either fold over all of those updates to the state,

or propagate the error. We also accumulate all emitted actions. This is done with the n-tree fold function.

1 Fixpoint ntree_fold_left {A T}

2 (f : A -> T -> A)

3 (sys : ntree T)

4 (a0 : A) : A :=

5 match sys with

6 | Node _ t list_child_trees =>

7 List.fold_left

8 (fun (a0’ : A) (sys’ : ntree T) =>

9 ntree_fold_left f sys’ a0’)

10 list_child_trees

11 (f a0 t)

12 end.

Listing 6.26: Folding over an n-tree.

These semantics for a contract system may not seem obviously intuitive; that they accurately describe

the behavior of an actual system is made more clear when we define the iterative process of building an

n-tree of contracts.

6.3.2.1 Iteratively Building a Contract System

As we mentioned previously, a contract system is parameterized by the same four types that parameterize

a contract, and the definition requires that all the contracts in a system be parameterized by the same

four types. Of course, this does not reflect actual systems of contracts, so we define an iterative building

technique to take heterogeneous contracts and make them homogeneous.

We define two functions, c sum l and c sum r. The aim of each is to produce a contract which preserves

the essential functionality of, respectively, the left (C1) and right (C2) contracts of the pair of contracts

(C1 C2) given it as an input.

Each takes a pair of contracts C1 and C2 of distinct types, and returns a contract whose type is the

product of the setup and state types, and the sum of the message and error types

Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2).

The intuition behind this is that the state of a system requires state values for each constituent contract;

likewise, to initialize a system we need setup data for each constituent contract. But to call the contract,

we only need a message for the specific contract we wish to call. Likewise if a call results in an error it

only need be an error the constituent contract that was called.

We give the formal definition of each function below.
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1 Definition c_sum_l

2 (C1 : Contract Setup1 Msg1 State1 Error1)

3 (C2 : Contract Setup2 Msg2 State2 Error2) :

4 Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2).

Listing 6.27: c sum l produces a contract with the essential functionality of the left contract, C1.

1 Definition c_sum_r

2 (C1 : Contract Setup1 Msg1 State1 Error1)

3 (C2 : Contract Setup2 Msg2 State2 Error2) :

4 Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2).

Listing 6.28: c sum r produces a contract with the essential functionality of the right contract, C2.

A call to c sum l C1 C2 takes a state (st1, st2) : State1 * Stat2. Given a message inl msg—that

is, a message msg : Msg1 to C1—it calls the receive function of C1 on st1 and msg. If the call to

(receive C1) is successful, returning an updated state st1’, we return (st1’, st2) and any emitted

actions. If given a message inr msg—that is, a message msg : Msg2 to C2—the call does nothing,

returning (st1, st2) and no emitted actions.

By executing along the semantics of C1 when called with a message to C1, and doing nothing otherwise,

the function c sum l is meant to give us a contract that represents C1 within the context of C1 and C2

together. A call to c sum r C1 C2 executes in an alogous fashion, but calling C2 with a message inr

msg and doing nothing otherwise.

Using c sum l and c sum r, we can iteratively build systems. First, we define the simple example of

nesting a contract C2 within another contract C1. We might do this, for example, if C1 is an interface

contract and C2 is a backend contract.

1 Definition nest

2 (C1 : Contract Setup1 Msg1 State1 Error1)

3 (C2 : Contract Setup2 Msg2 State2 Error2) :

4 ContractPlaceGraph (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2)

5 := let T :=

6 Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2) in

7 Node T (c_sum_l C1 C2) [Node T (c_sum_r C1 C2) nil].

Listing 6.29: A function to nest a contract C2 within another contract C1.

The function nest takes two contracts C1 and C2, and takes their image under c sum l and c sum r,

producing a place graph

nest C1 C2 := Node T (c sum l C1 C2) [ Node T (c sum r C1 C2) nil ].

The root contract, c sum l C1 C2, represents C1, and the child contract, c sum r C1 C2, represents

C2. The place graph nest C1 C2 can receive messages of the form inl msg, targeting C1, or inr msg,
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c sum l C1 C2

c sum r C1 C2

Figure 6.2: A contract C2 nested within another contract C1.

targeting C2, and the state of nest C1 C2 is a witness of the state of C1 as well as the state of C2. The

system nest C1 C2 makes progress as its constituents, C1 and C2, are called successfully and update the

system’s state. See Figure 6.2.

Moving to a slightly more complicated example, we can iteratively add children to an existing contract

system. We start with the singleton system, which is simply a singleton n-tree, or an n-tree with only one

node, of the form Node C nil.

1 Definition singleton_place_graph

2 (C : Contract Setup Msg State Error)

3 : ContractPlaceGraph Setup Msg State Error :=

4 Node _ C nil.

From here, we can add children to the singleton system via a function sys add child r.

1 Definition sys_add_child_r

2 (sys : ContractPlaceGraph Setup1 Msg1 State1 Error1)

3 (C : Contract Setup2 Msg2 State2 Error2) :

4 ContractPlaceGraph (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2)

5 :=

6 let T := Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2)

7 in

8 match sys with

9 | Node _ root_contract _ =>

10 match (ntree_map (fun C1 => c_sum_l C1 C) sys) with

11 | Node _ root_contract’ children =>

12 Node T root_contract’ (children ++ [Node T (c_sum_r root_contract C) nil])

13 end

14 end.

Listing 6.30: Iterataively add a child C to a contract system sys.

Given a contract system sys, we iteratively add a child C to the system by first mapping over sys with

c sum l C, or rather

(fun C1 => c sum l C1 C),

and then appending the right sum of the root contract root contract and C,

c sum r root contract C,
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root

child 1 child 2 ...

c sum l root C

c sum l child 1 C c sum l child 2 C ... c sum r root C

Figure 6.3: Appending a child C to a system Node root [child 1 ; child 2 ; ... ].

to the list of children of the root contract. This maintains the same functionality of each node inherited

from sys, while adding C to the system, by iteratively applying c sum l and c sum r. See Figure 6.3.

6.3.2.2 System Contracts, Morphisms, and Isomorphisms

System place graphs are inductive structures built on contracts, so naturally we might consider morphisms

of contract systems, building off of contract morphisms. In this context, our main goal is to establish

notions of equivalences of system place graphs analogous to what we saw in §6.2.3.

Like contract morphisms, a morphism of system place graphs consists of four component morphisms,

along with coherence conditions for sys init and sys receive.

1 (** A morphism of system place graphs *)

2 Record SystemMorphism

3 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

4 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2) :=

5 build_system_morphism {

6 (* the components of a morphism *)

7 sys_setup_morph : Setup1 -> Setup2 ;

8 sys_msg_morph : Msg1 -> Msg2 ;

9 sys_state_morph : State1 -> State2 ;

10 sys_error_morph : Error1 -> Error2 ;

11 (* coherence conditions *)

12 sys_init_coherence : forall c ctx s,

13 result_functor sys_state_morph sys_error_morph

14 (sys_init sys1 c ctx s) =

15 sys_init sys2 c ctx (sys_setup_morph s) ;

16 sys_recv_coherence : forall c ctx st op_msg,

17 result_functor (fun ’(st, l) => (sys_state_morph st, l)) sys_error_morph

18 (sys_receive sys1 c ctx st op_msg) =

19 sys_receive sys2 c ctx (sys_state_morph st) (option_map sys_msg_morph op_msg)

;

20 }.

Listing 6.31: The formal definition of a morphism of system place graphs.
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As before, composition is given by composition of component morphisms, which we formalize as follows,

and composition is associative.

1 Definition compose_sm (g : SystemMorphism sys2 sys3) (f : SystemMorphism sys1 sys2) :

2 SystemMorphism sys1 sys3 := {|

3 (* the components *)

4 sys_setup_morph := compose (sys_setup_morph sys2 sys3 g) (sys_setup_morph sys1 sys2 f) ;

5 sys_msg_morph := compose (sys_msg_morph sys2 sys3 g) (sys_msg_morph sys1 sys2 f) ;

6 sys_state_morph := compose (sys_state_morph sys2 sys3 g) (sys_state_morph sys1 sys2 f) ;

7 sys_error_morph := compose (sys_error_morph sys2 sys3 g) (sys_error_morph sys1 sys2 f) ;

8 (* the coherence results *)

9 sys_init_coherence := sys_compose_init_coh g f ;

10 sys_recv_coherence := sys_compose_recv_coh g f ;

11 |}.

Listing 6.32: Composition of morphisms of system place graphs.

The identity system morphism is given by identity component functions, given as follows.

1 Definition id_sm (sys : ContractPlaceGraph Setup Msg State Error) :

2 SystemMorphism sys sys := {|

3 (* components *)

4 sys_setup_morph := id ;

5 sys_msg_morph := id ;

6 sys_state_morph := id ;

7 sys_error_morph := id ;

8 (* coherence conditions *)

9 sys_init_coherence := sys_init_coherence_id sys ;

10 sys_recv_coherence := sys_recv_coherence_id sys ;

11 |}.

Listing 6.33: The identity morphism of system place graphs.

Similar to before we define an isomorphism of systems as a pair of morphisms that compose each way to

the identity.

1 Definition is_iso_sm (m1 : SystemMorphism sys1 sys2) (m2 : SystemMorphism sys2 sys1) :=

2 compose_sm m2 m1 = id_sm sys1 /\

3 compose_sm m1 m2 = id_sm sys2.

Listing 6.34: An isomorphism of contract systems.

The reader may notice that system morphisms look almost identical to contract morphisms. Because

system place graphs have the sys init and sys receive functions, which mimic the init and receive

of contracts, we might ask whether systems are themselves contracts.

Indeed, this is the case. We can define the system contract, which is the contract in ConCert that

represents a contract system.
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1 Definition sys_contract (sys : ContractPlaceGraph Setup Msg State Error) :=

2 build_contract (sys_init sys) (sys_receive sys).

Listing 6.35: The system contract.

Furthermore, system morphisms are in one-to-one correspondence with the morphisms of the corresponding

contracts. We have two functions—one that takes system morphisms to contract morphisms,

1 Definition sysm_to_cm

2 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

3 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2)

4 (f : SystemMorphism sys1 sys2) : ContractMorphism (sys_contract sys1) (sys_contract

sys2).

and one that takes contract morphisms to system morphisms—

1 Definition cm_to_sysm

2 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

3 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2)

4 (f : ContractMorphism (sys_contract sys1) (sys_contract sys2)) : SystemMorphism sys1

sys2.

which compose each way to the identity. In this correspondence, the identity corresponds to the identity,

and compositions to compositions.

6.3.3 The Link Graph

Now that we have the data type for contract systems as its place graph, let us turn our attention to a

contract system’s link graph. In a bigraph, the link graph represents the interactions of processes in

a system, as opposed to the place graph which only represents a spacial, or hierarchical relationship

between processes.

For contract systems, a link graph has an obvious definition, at least intuitively. That is, that for contracts

C1 and C2 in a contract system, there is an edge

C1 C2

when there is a contract step of C1 which emits a call to C2. Even more, because of the semantics of

a blockchain, that call to C1 succeeds only if the emitted call to C2 succeeds. Indeed, a contract call

succeeds if and only if it doesn’t throw an error and all the calls which it emits succeed.

Furthermore, the place graph is essential to the semantics of a system of contracts. Going back to the

example of an interface and backend contract forming a system, that the link graph connect calls to the
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interface to (permissioned) calls to the backend is essential to the system functioning as intended. Indeed,

the link graph dictates how systems move forward, grouping and ordering contract calls that constitute a

genuine step forward for the system. Depending on the link graph structure, which itself depends on

contract addresses and message-passing, a contract system can behave in very different ways.

A genuine step forward for a system, then, is a full traversal of the link graph from the point of entry of

an initiating call. Such a traversal is a sequence of recursive calls to sys receive, each of which is a step

forward for the system, such that in the end the accumulated, emitted transactions do not include any

system-recursive calls.

6.3.3.1 System Steps and System Trace

To encode the semantics of a link graph into a contract system, we need first to formalize the semantics

of a system stepping forward, and its trace.

Consider a system of interacting contracts that has a frontend, or interface, contract, and a backend

contract. Messages come in through the frontend, whose storage has no meaningful data to the system,

and are simply forwarded to the backend, where the meaningful part of the contract system’s storage

is. A transaction coming in through the interface only really has full meaning for the system when the

ensuing chain of transactions is completed.

Now compare such a system to its monolithic counterpart—where the interface and backend are housed in

the same contract and there is no need for any message-passing—then the contract call corresponding to

the call to the interface and message to the backend would be a single call and execution to the monolithic

contract which updates the storage.

Because of this, we distinguish between incremental, or single, steps, and system steps. The distinction is

that a system step can be one, many, or no incremental steps. An incremental step is defined to be a

single, successful call to the contract system.

1 Record SingleSystemStep (sys : ContractPlaceGraph Setup Msg State Error)

2 (prev_sys_state next_sys_state : State) :=

3 build_sys_single_step {

4 sys_step_chain : Chain ;

5 sys_step_ctx : ContractCallContext ;

6 sys_step_msg : option Msg ;

7 sys_step_nacts : list ActionBody ;

8 (* we can call receive successfully *)

9 sys_recv_ok_step :

10 sys_receive sys sys_step_chain sys_step_ctx prev_sys_state sys_step_msg =

11 Ok (next_sys_state, sys_step_nacts) ;

12 }.

Listing 6.36: An incremental, or single, step of a contract system.
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Irrespective of the contract system in question, any meaningful step forward for a system must be

expressible as a chained list of single system steps, and thus has semantics in the following type.

1 Definition ChainedSingleSteps (sys : ContractPlaceGraph Setup Msg State Error) :=

2 ChainedList State (SingleSystemStep sys).

Listing 6.37: A system step can be one or several incremental steps.

On the other hand, it is not true that any chained list of system steps constitutes a meaningful step

forward. We must instead define what it means for a contract system to meaningfully step forward by

defining a function,

sys link : State -> State -> Type,

which links two system states by a system step forward. Those steps must have semantics as chained

single steps via a function of the form

sys link semantics st1 st2 : sys link st1 st2 -> ChainedSingleSteps st1 st2.

Such a definition of system steps is in fact a specification because whether or not a system actually

satisfies these semantics for stepping forward depends on conditions of a given state of the chain, including

contract addresses and contract storage. This is our definition of a system’s link graph.

From here, we can give a full definition of a contract system as a bigraph: a set of contracts, encoded in a

place graph, with link graph semantics.

1 Record ContractSystem (Setup Msg State Error : Type) :=

2 build_contract_system {

3 (* the place and link graphs *)

4 sys_place : ContractPlaceGraph Setup Msg State Error ;

5 sys_link : State -> State -> Type ;

6 (* the link graph has semantics in ChanedSingleSteps *)

7 sys_link_semantics : forall st1 st2,

8 sys_link st1 st2 ->

9 ChainedSingleSteps sys_place st1 st2 ;

10 }.

Given this definition of a contract system, we can define a type of system steps for any system sys, which

are steps given by the link graph semantics.

1 Definition SystemStep (sys : ContractSystem Setup Msg State Error) :=

2 sys_link _ _ _ _ sys.

Listing 6.38: The type of system steps.
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Finally, a system trace is a chained list of system steps.

1 Definition SystemTrace (sys : ContractSystem Setup Msg State) :=

2 ChainedList (SystemState State) (SystemStep sys).

Listing 6.39: A contract system’s trace is a chained list of system steps.

As we did for contracts in §6.2.3, we use the definitions of system steps and system trace to reason about

bisimulations of systems.

6.4 Bisimulations of Contract Systems

With the data type for contract systems in place, we are able to now define bisimulations of contract

systems, building off of §6.2.1. Like bisimulations of contracts, a bisimulation of contract systems is

a correspondence between system states, and steps forward in a system state. Because system steps

are defined by the link graph, a bisimulation of systems indicates a correspondence between the link

graph structure of two contract systems. As before, we will consider a system’s trace, and system trace

morphisms, to establish bisimulations.

6.4.1 System Trace Morphisms and System Bisimulations

A system trace morphism between systems sys1 and sys2 consists of a function from the state type of

sys1 to that of sys2 which sends initial states to initial states, and steps defined by the link graph of

sys1 to corresponding steps defined by the link graph of sys2.

1 Record SystemTraceMorphism

2 (sys1 : ContractSystem Setup1 Msg1 State1 Error1)

3 (sys2 : ContractSystem Setup2 Msg2 State2 Error2) :=

4 build_st_morph {

5 (* a function *)

6 st_state_morph : State1 -> State2 ;

7 (* init state sys1 -> init state sys2 *)

8 sys_genesis_fixpoint : forall init_sys_state,

9 is_genesis_sys_state sys1 init_sys_state ->

10 is_genesis_sys_state sys2 (st_state_morph init_sys_state) ;

11 (* step morphism *)

12 sys_step_morph : forall sys_state1 sys_state2,

13 SystemStep sys1 sys_state1 sys_state2 ->

14 SystemStep sys2 (st_state_morph sys_state1) (st_state_morph sys_state2) ;

15 }.

Listing 6.40: A morphism of system traces.

128



We can define composition analogously to contract trace morphisms, and as before, composition is

associative. Composition relies on two functions, sys genesis compose and sys step compose, which

are also defined analogously to their counterparts in contract trace morphisms.

1 Definition compose_stm

2 (m2 : SystemTraceMorphism sys2 sys3)

3 (m1 : SystemTraceMorphism sys1 sys2) : SystemTraceMorphism sys1 sys3 := {|

4 st_state_morph := compose (st_state_morph _ _ m2) (st_state_morph _ _ m1) ;

5 sys_genesis_fixpoint := sys_genesis_compose m2 m1 ;

6 sys_step_morph := sys_step_compose m2 m1 ;

7 |}.

Listing 6.41: Composition of system trace morphisms.

The dependent notion of equality of system trace morphisms also mirrors that of contract trace morphisms.

1 Lemma eq_stm_dep

2 (sys1 : ContractSystem Setup1 Msg1 State1 Error1)

3 (sys2 : ContractSystem Setup2 Msg2 State2 Error2)

4 (st_st_m : State1 -> State2)

5 sys_gen_fix1 sys_gen_fix2

6 (sys_step_m1 sys_step_m2 : forall sys_state1 sys_state2,

7 SystemStep sys1 sys_state1 sys_state2 ->

8 SystemStep sys2 (st_st_m sys_state1) (st_st_m sys_state2)) :

9 sys_step_m1 = sys_step_m2 ->

10 {| st_state_morph := st_st_m ;

11 sys_genesis_fixpoint := sys_gen_fix1 ;

12 sys_step_morph := sys_step_m1 ; |}

13 =

14 {| st_state_morph := st_st_m ;

15 sys_genesis_fixpoint := sys_gen_fix2 ;

16 sys_step_morph := sys_step_m2 ; |}.

Listing 6.42: Equality of system trace morphisms.

Finally, the identity morphism is defined similarly to that of contract trace morphisms.

1 Definition id_stm

2 (sys : ContractSystem Setup Msg State Error) : SystemTraceMorphism sys sys :=

3 {|

4 st_state_morph := id ;

5 sys_genesis_fixpoint := id_sys_genesis_fixpoint sys ;

6 sys_step_morph := id_sys_step_morph sys ;

7 |}.

Listing 6.43: The identity system trace morphism.

It relies on two functions, which are both defined trivially.
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1 Definition id_sys_genesis_fixpoint (sys : ContractSystem Setup Msg State Error)

2 init_sys_state

3 (gen_sys : is_genesis_sys_state sys init_sys_state) :

4 is_genesis_sys_state sys (id init_sys_state) :=

5 gen_sys.

Listing 6.44: The genesis fixpoint result for the identity system trace morphism.

1 Definition id_sys_step_morph (sys : ContractSystem Setup Msg State Error)

2 sys_state1 sys_state2 (step : SystemStep sys sys_state1 sys_state2) :

3 SystemStep sys (id sys_state1) (id sys_state2) :=

4 step.

Listing 6.45: The step result for the identity system trace morphism.

We then define system trace isomorphisms as morphisms which compose each way to the identity.

1 Definition is_iso_stm

2 (m1 : SystemTraceMorphism sys1 sys2) (m2 : SystemTraceMorphism sys2 sys1) :=

3 compose_stm m2 m1 = id_stm sys1 /\

4 compose_stm m1 m2 = id_stm sys2.

Listing 6.46: An isomorphism of system trace morphisms is a pair of system trace morphisms which

compose each way to the identity.

And finally, a bisimulation of systems is an isomorphism of system traces.

1 Definition systems_bisimilar

2 (sys1 : ContractSystem Setup1 Msg1 State1 Error1)

3 (sys2 : ContractSystem Setup2 Msg2 State2 Error2) :=

4 exists (f : SystemTraceMorphism sys1 sys2) (g : SystemTraceMorphism sys2 sys1),

5 is_iso_stm f g.

Listing 6.47: The formal definition of a bisimulation of contract systems.

A note on system bisimulations. Because system traces are defined by a system’s link graph, in order

for a bisimulation of contract systems to have legitimate semantic meaning, the system must satisfy the

specification given by its link graph. This will typically mean that constituent contracts of the system

are deployed at certain addresses, and that contracts are able to call each other, e.g. by having the

appropriate addresses in storage so that they can emit transactions which call other contracts in the

system. Crucially, a bisimulation of systems only reflects an equivalence for the behavior of a system

which is deployed in such a way that it satisfies the place graph.
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6.4.2 Lifting Theorems for Contract Systems

We have various lifting theorems for system morphisms to system trace morphisms which generalize how

contract morphisms lift to contract trace morphisms.

System morphisms indicate a relationship between single system steps of two systems, and so from a

system morphism we can derive a correspondence between all single system steps. Thus system morphisms

lift to system trace morphisms if the link graph structure on each system is compatible with regards to

individual system steps. In particular, if both system steps have the discrete link graph, for which all

system steps are single system steps, then system morphisms lift to system trace morphisms.

More formally, given a system place graph, we can construct the discrete link graph, which is a link graph

where all system steps are given by single system steps.

1 Definition discrete_link (sys : ContractPlaceGraph Setup Msg State Error) st1 st2 :=

2 SingleSystemStep sys st1 st2.

3

4 Definition discrete_link_semantics (sys : ContractPlaceGraph Setup Msg State Error)

5 st1 st2 (step : discrete_link sys st1 st2) :

6 ChainedSingleSteps sys st1 st2 :=

7 (snoc clnil step).

8

9 Definition discrete_sys (sys : ContractPlaceGraph Setup Msg State Error) := {|

10 sys_place := sys ;

11 sys_link := discrete_link sys ;

12 sys_link_semantics := discrete_link_semantics sys ;

13 |}.

Listing 6.48: The discrete link graph construction on any contract place graph.

The lifting theorem for system trace morphisms is that a system morphism lifts to a system trace

morphism of discrete systems.

1 Definition sm_lift_stm (f : SystemMorphism sys1 sys2) :

2 SystemTraceMorphism (discrete_sys sys1) (discrete_sys sys2).

Listing 6.49: A function that lifts system morphisms to system trace morphisms.

We have that the identity lifts to the identity,

1 Theorem sm_lift_stm_id :

2 sm_lift_stm (id_sm sys1) = id_stm (discrete_sys sys1).

Listing 6.50: The identity system morphism lifts to the identity system trace morphism under the discrete

link graph.

and compositions to compositions.
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1 Lemma sm_lift_stm_compose (g : SystemMorphism sys2 sys3) (f : SystemMorphism sys1 sys2) :

2 sm_lift_stm (compose_sm g f) =

3 compose_stm (sm_lift_stm g) (sm_lift_stm f).

Listing 6.51: Compositions of system morphisms lift to compositions of system trace morphisms.

Thus isomorphic systems are also bisimilar, under the discrete link graph.

1 Corollary sys_iso_to_bisim

2 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

3 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2) :

4 systems_isomorphic sys1 sys2 ->

5 systems_bisimilar (discrete_sys sys1) (discrete_sys sys2).

Listing 6.52: Isomorphism contract systems are bisimilar under the discrete link graph.

Furthermore, because system morphisms correspond to contract morphisms of the system contract, a

contract morphism lifts to a system morphism of singleton systems (systems with only one constituent

contract). We define this with a function lift cm to sm.

1 Definition lift_cm_to_sm (f : ContractMorphism C1 C2) :

2 SystemMorphism (singleton_place_graph C1) (singleton_place_graph C2).

Listing 6.53: A contract morphism lifts to a system morphism of singleton systems.

Similarly, contract morphisms lift to system trace morphism on the singleton system.

1 Definition lift_ctm_to_stm (f : ContractTraceMorphism C1 C2) :

2 SystemTraceMorphism

3 (discrete_sys (singleton_place_graph C1))

4 (discrete_sys (singleton_place_graph C2)).

The identity contract morphism lifts to the identity system morphism on the singleton place graph,

1 Lemma lift_id_cm_to_id_sm :

2 lift_cm_to_sm (id_cm C) = id_sm (singleton_place_graph C).

Listing 6.54: The identity contract moprhism lifts to the identity system morphism of singleton systems.

and compositions lift to compositions.

1 Lemma lift_cm_to_sm_comp

2 (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C3) :

3 lift_cm_to_sm (compose_cm g f) = compose_sm (lift_cm_to_sm g) (lift_cm_to_sm f).

Thus isomorphic contracts are isomorphic (and thus bisimilar) as singleton systems with the discrete link

graph.
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1 Theorem c_iso_csys_iso :

2 contracts_isomorphic C1 C2 ->

3 systems_isomorphic (singleton_place_graph C1) (singleton_place_graph C2).

Listing 6.55: The singleton systems of isomorphic contracts are isomorphic.

These lifting theorems show the details of the generalization from contracts, contract trace morphisms,

and contract bisimulations to contract systems, system trace morphisms, and system bisimulations.

6.5 Conclusion

Contract system specifications obfuscate the intent of the core functionality of the system with details

about how different processes pass messages between each other and how their executions relate to each

other. Our core thesis of this chapter was that this can be mitigated by separating the specification

into that of system infrastructure and that of the core, intended behavior, the latter being agnostic to a

contract’s modular structure. In contrast with other efforts to address system complexity, which use tools

like model checkers to reason in a composable manner over the system, we develop process-algebraic

formalisms with the intent of separating the specification of the system’s infrastructure from its core

functionality.

In particular, we formalized contract systems as bigraphs, which describe the spacial hierarchy of a

contract system as well as how the constituent contracts are linked through contract calls. A contract

system’s link graph is a specification of system infrastructure. Furthermore, contract systems defined

with a place and link graph take a computational form which acts coherently, as one single process. Our

formalisms are designed so that a specified contract can be implemented as a single contract, or proved

to be bisimilar to a contract whose specification isolates that of the desired, core functionality.

Though we only used bigraphs in this chapter as a data type, the process algebraic properties of bigraphs

have applications further than what we have mentioned. By embedding the process-algebraic semantics

of bigraphs into ConCert, it may be possible to reason about contract systems in more sophisticated

ways that leverage the process algebra, building on previous work relating to bigraphs [120] and formally

reasoning about composable DeFi protocols [130].

Future work includes formalizing theories to support such work, as well as using the formalisms of this

chapter to attempt verification of a practical, deployed system of contracts in terms of a single process

bisimilar to the system.
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Chapter 7

Conclusion

Financial smart contracts have complicated specifications. Meta properties, by definition, are difficult to

accurately capture with a contract specification, and the failure to do so routinely exposes fatal smart

contract vulnerabilities. However, formal verification tools based in interactive theorem provers, like

ConCert, offer us a chance to introduce mathematical techniques to reason about contracts and their

specifications with greater precision and mathematical maturity.

We targeted three classes of meta properties common to financial smart contracts: the intended economic

properties (§4), the intended upgradeability properties (§5), and the properties intended of a system of

interacting contracts, taken as a whole (§6). For each we introduced formal and theoretical tools into

ConCert designed to rigorously specify each class of meta properties, including contract metaspecifications,

contract morphisms, and bisimulations of both individual contracts and contract systems. In each of

these cases, we showed examples to illustrate how these tools can be used in specification and proof.

The goal of this work has been to add mathematical precision and maturity to the art of contract

specification and verification, in the hopes that critical financial infrastructure can be more carefully

designed, rigorously specified, formally verified, and safely deployed to the blockchain.

7.1 Limitations and Future Work

There are limitations to our work which we hope to address in future work.

In Chapter 4, we stated and verified economic properties derived from a theoretical formulation of AMMs

and DeFi which modeled a blockchain as a state machine [19, 20]. Crucially, these formulations are not

formalized. We could more rigorously state and prove economic properties of financial smart contracts if

we formalized a theory of AMMs and DeFi in ConCert, for which the bigraph embedding of Chapter 6

lays a foundation.
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To do so, we must first formally define DeFi primitives, including swaps, swap rate, exchange rate,

liquidity provider, and liquidity. From these we can give a formalized derivation of key properties of

financial smart contracts, including those that we stated in the structured pools metaspecification of

§4.5: demand sensitivity, incentive consistency, positive trading cost, and zero-impact liquidity change.

Such an embedding makes all of the formal reasoning relevant to the contract specification’s economic

properties fully and clearly encoded in ConCert. The result improves on the rigor of previously cited work

on theories of DeFi and AMMs [19, 20] because the DeFi primitives and subsequently derived properties

have explicit, formalized semantics in a process algebra, and can be stated of contracts with verified

extraction.

The ultimate goal of embedding a theory of DeFi and AMMs into ConCert is to produce a comprehensive,

usable, Coq-based toolkit for precisely stating and verifying economic properties of a contract specification.

From there it could be made adaptable and automated with specialized tactics and a broad library of

verified economic properties, usable at least in principle in contract specifications by engineers in the wild.

While the foundations will be process-algebraic (using bigraphs), carefully formalized DeFi primitives

could make this scalable by largely abstracting complex process-algebraic reasoning away. Ideally, future

researchers could build off of these foundations to reason, in an ever more sophisticated way, about

behaviors and vulnerabilities of financial smart contracts.

Another direction of future work builds off the observation of §5.5.4 that general upgradeability frameworks

exist in analogy to fiber bundles, a geometric construction which is used in mathematics and phyisics to

separate the interacting structure of various components of complicated mathematical objects. These

results suggest that programs formalized within a proof assistant exhibit properties commonly articulated

by mathematicians—in this case, of geometric objects and topological spaces.

There is good reason to suspect that these results are indicative of something deeper, that techniques

from topology have real application to formal verification. Topology, by way of homotopy theory, is

known to have deep connections to computation by way of computational trinitarianism [68, 98]. In

this theoretical context, computation, propositions, and proofs all have a geometric, or topological,

interpretation. Geometries also emerge in various type theories under active study, including Homotopy

Type Theory (HoTT) [21] and others [39, 50]. Each of these type theories are logics as well as computable

foundations of geometry, so propositions and proofs have an associated geometry. From this it is natural

to hypothesize that the formal structure and behavior of programs may have geometric properties, and so

might the propositions and proofs of a formal specification—and that these geometries may interact.

An explicit study of the geometry of programs, propositions, and proofs may be of interest to computer

scientists and mathematicians alike. To computer scientists, in formal methods. We have already shown

that programs themselves can have geometric properties which can be leveraged in formal specification

and verification. It may also be worthwhile to understand the relationship of a proposition’s formal proof

to its geometry to support work in proof repair [113, 114], by understanding geometrically how alterations

to a proposition correspond to alterations to its proof. To mathematicians, an understanding of the
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geometry of propositions and their proofs gives a formal and geometric way to study the (non-)equivalence

of proofs and proof spaces of theorems, adding theoretical richness to the common practice of searching

for multiple proofs of a single theorem [44].

The overarching goal, both of this thesis and any future work, is to make the practice of formal

verification—stating propositions and supplying proofs—more effectual by adding to its mathematical

maturity. This is done by treating formalized programs as well-defined mathematical objects, and

introducing formal, mathematical techniques to state and prove propositions about programs which are

difficult to state correctly in prose. Because programs are vulnerable to poor specifications as much as

they are to incorrect code, doing so could make formally verified software more secure by grounding the

process of formal verification deeper in mathematical theory.
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Appendix A

Proofs and Definitions of Chapter 4

A.1 Formal Specification

We include the typeclass specifications for each contract type and the specification predicate.

A.1.1 Typeclass Specifications

Listing A.1: The formalization of the typeclass Setup Spec, which characterizes the storage type Setup

of a structured pool contract.

1 Class Setup_Spec (T : Type) :=

2 build_setup_spec {

3 init_rates : T -> FMap token exchange_rate ;

4 init_pool_token : T -> token ;

5 }.

Listing A.2: The formalization of the typeclass Msg Spec and its associated types, which characterize the

storage type Msg of a structured pool contract.

1 Record pool_data := {

2 token_pooled : token ;

3 qty_pooled : N ; (* the qty of tokens to be pooled *)

4 }.

5

6 Record unpool_data := {

7 token_unpooled : token ;

8 qty_unpooled : N ; (* the qty of pool tokens being turned in *)

9 }.

10

11 Record trade_data := {

12 token_in_trade : token ;
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13 token_out_trade : token ;

14 qty_trade : N ; (* the qty of token_in going in *)

15 }.

16

17 Class Msg_Spec (T : Type) :=

18 build_msg_spec {

19 pool : pool_data -> T ;

20 unpool : unpool_data -> T ;

21 trade : trade_data -> T ;

22 (* any other potential entrypoints *)

23 other : other_entrypoint -> option T ;

24 }.

Listing A.3: The formalization of the typeclass State Spec and its associated types, which characterize

the storage type State of a structured pool contract.

1 Context { other_entrypoint : Type }.

2 Class State_Spec (T : Type) :=

3 build_state_spec {

4 (* the exchange rates *)

5 stor_rates : T -> FMap token exchange_rate ;

6 (* token balances *)

7 stor_tokens_held : T -> FMap token N ;

8 (* pool token data *)

9 stor_pool_token : T -> token ;

10 (* number of outstanding pool tokens *)

11 stor_outstanding_tokens : T -> N ;

12 }.

Listing A.4: The formalization of the typeclass Error Spec, which characterizes the storage type Error

of a structured pool contract.

1 Definition error : Type := N.

2 Class Error_Spec (T : Type) :=

3 build_error_type {

4 error_to_Error : error -> T ;

5 }.
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A.1.2 The Formal Specification of a Structured Pool Contract

Listing A.5: The full, formal sepcification of a structured pool contract.

1 (* =============================================================================

2 * The Contract Specification ‘is_structured_pool‘ :

3 We detail a list of propositions of a contract’s behavior which must be

4 proven true of a given contract for it to be a correct structured pool contract.

5 * ============================================================================= *)

6

7 { Setup Msg State Error : Type }

8 { other_entrypoint : Type }

9 ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable Error}.

10

11 (** Specification of the Msg type:

12 - A Pool entrypoint, whose interface is defined by the pool_data type

13 - An Unpool entrypoint, whose interface is defined by the unpool_data type

14 - A Trade entrypoint, whose interface is defined by the trade_data type

15 - Possibly other types

16 *)

17

18 Record pool_data := {

19 token_pooled : token ;

20 qty_pooled : N ; (* the qty of tokens to be pooled *)

21 }.

22

23 Record unpool_data := {

24 token_unpooled : token ;

25 qty_unpooled : N ; (* the qty of pool tokens being turned in *)

26 }.

27

28 Record trade_data := {

29 token_in_trade : token ;

30 token_out_trade : token ;

31 qty_trade : N ; (* the qty of token_in going in *)

32 }.

33

34 (* The Msg typeclass *)

35 Class Msg_Spec (T : Type) :=

36 build_msg_spec {

37 pool : pool_data -> T ;

38 unpool : unpool_data -> T ;

39 trade : trade_data -> T ;

40 (* any other potential entrypoints *)

41 other : other_entrypoint -> option T ;

42 }.

43

44

45

46

155



47 (** Specification of the State type:

48 The contract state keeps track of:

49 - the exchange rates

50 - tokens held

51 - pool token address

52 - number of outstanding pool tokens

53 *)

54 Class State_Spec (T : Type) :=

55 build_state_spec {

56 (* the exchange rates *)

57 stor_rates : T -> FMap token exchange_rate ;

58 (* token balances *)

59 stor_tokens_held : T -> FMap token N ;

60 (* pool token data *)

61 stor_pool_token : T -> token ;

62 (* number of outstanding pool tokens *)

63 stor_outstanding_tokens : T -> N ;

64 }.

65

66 (** Specification of the Setup type:

67 To initialize the contract, we need:

68 - the initial rates

69 - the pool token

70 *)

71 Class Setup_Spec (T : Type) :=

72 build_setup_spec {

73 init_rates : T -> FMap token exchange_rate ;

74 init_pool_token : T -> token ;

75 }.

76

77 (* specification of the Error type *)

78 Class Error_Spec (T : Type) :=

79 build_error_type {

80 error_to_Error : error -> T ;

81 }.

82

83 (* we assume that our contract types satisfy the type specifications *)

84 Context ‘{Msg_Spec Msg} ‘{Setup_Spec Setup} ‘{State_Spec State} ‘{Error_Spec Error}.

85

86 (* First, we assume that all successful calls require a message *)

87 Definition none_fails (contract : Contract Setup Msg State Error) : Prop :=

88 forall cstate chain ctx,

89 (* the receive function returns an error if the token to be pooled is not in the

90 rates map held in the storage (=> is not in the semi-fungible family) *)

91 exists err : Error,

92 receive contract chain ctx cstate None = Err err.

93

94

95
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96 (* We also specify that the Msg type is fully characterized by its typeclass *)

97 Definition msg_destruct (contract : Contract Setup Msg State Error) : Prop :=

98 forall (m : Msg),

99 (exists p, m = pool p) \/

100 (exists u, m = unpool u) \/

101 (exists t, m = trade t) \/

102 (exists o, Some m = other o).

103

104

105 (** Specification of the POOL entrypoint *)

106

107 (* A successful call to POOL means that token_pooled has an exchange rate (=> is in T) *)

108 Definition pool_entrypoint_check (contract : Contract Setup Msg State Error) : Prop :=

109 forall cstate cstate’ chain ctx msg_payload acts,

110 (* a successful call *)

111 receive contract chain ctx cstate (Some (pool (msg_payload))) = Ok(cstate’, acts) ->

112 (* an exchange rate exists *)

113 exists r_x,

114 FMap.find msg_payload.(token_pooled) (stor_rates cstate) = Some r_x.

115

116 (* When the POOL entrypoint is successfully called, it emits a TRANSFER call to the

117 token in storage, with q tokens in the payload of the call *)

118 Definition pool_emits_txns (contract : Contract Setup Msg State Error) : Prop :=

119 forall cstate chain ctx msg_payload cstate’ acts,

120 (* the call to POOL was successful *)

121 receive contract chain ctx cstate (Some (pool (msg_payload))) = Ok(cstate’, acts) ->

122 (* in the acts list there is a transfer call with q tokens as the payload *)

123 exists transfer_to transfer_data transfer_payload mint_data mint_payload,

124 (* there is a transfer call *)

125 let transfer_call := (act_call

126 (* calls the pooled token address *)

127 (msg_payload.(token_pooled).(token_address))

128 (* with amount 0 *)

129 0

130 (* and payload transfer_payload *)

131 (serialize (FA2Spec.Transfer transfer_payload))) in

132 (* with a transfer in it *)

133 In transfer_data transfer_payload /\

134 (* which itself has transfer data *)

135 In transfer_to transfer_data.(FA2Spec.txs) /\

136 (* whose quantity is the quantity pooled *)

137 transfer_to.(FA2Spec.amount) = msg_payload.(qty_pooled) /\

138 (* there is a mint call in acts *)

139 let mint_call := (act_call

140 (* calls the pool token contract *)

141 (stor_pool_token cstate).(token_address)

142 (* with amount 0 *)

143 0

144 (* and payload mint_payload *)
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145 (serialize (FA2Spec.Mint mint_payload))) in

146 (* with has mint_data in the payload *)

147 In mint_data mint_payload /\

148 (* and the mint data has these properties: *)

149 let r_x := get_rate msg_payload.(token_pooled) (stor_rates cstate) in

150 mint_data.(FA2Spec.qty) = msg_payload.(qty_pooled) * r_x /\

151 mint_data.(FA2Spec.mint_owner) = ctx.(ctx_from) /\

152 (* these are the only emitted transactions *)

153 (acts = [ transfer_call ; mint_call ] \/

154 acts = [ mint_call ; transfer_call ]).

155

156 (* When the POOL entrypoint is successfully called, tokens_held goes up appropriately *)

157 Definition pool_increases_tokens_held

158 (contract : Contract Setup Msg State Error) : Prop :=

159 forall cstate chain ctx msg_payload cstate’ acts,

160 (* the call to POOL was successful *)

161 receive contract chain ctx cstate (Some (pool msg_payload)) = Ok(cstate’, acts) ->

162 (* in cstate’, tokens_held has increased at token *)

163 let token := msg_payload.(token_pooled) in

164 let qty := msg_payload.(qty_pooled) in

165 let old_bal := get_bal token (stor_tokens_held cstate) in

166 let new_bal := get_bal token (stor_tokens_held cstate’) in

167 new_bal = old_bal + qty /\

168 forall t,

169 t <> token ->

170 get_bal t (stor_tokens_held cstate) =

171 get_bal t (stor_tokens_held cstate’).

172

173 (* And the rates don’t change *)

174 Definition pool_rates_unchanged (contract : Contract Setup Msg State Error) : Prop :=

175 forall cstate cstate’ chain ctx msg_payload acts,

176 (* the call to POOL was successful *)

177 receive contract chain ctx cstate (Some (pool msg_payload)) = Ok(cstate’, acts) ->

178 (* rates all stay the same *)

179 forall t,

180 FMap.find t (stor_rates cstate) = FMap.find t (stor_rates cstate’).

181

182 (* The outstanding tokens change appropriately *)

183 Definition pool_outstanding (contract : Contract Setup Msg State Error) : Prop :=

184 forall cstate cstate’ chain ctx msg_payload acts,

185 (* the call to POOL was successful *)

186 receive contract chain ctx cstate (Some (pool msg_payload)) = Ok(cstate’, acts) ->

187 (* rates all stay the same *)

188 let rate_in := get_rate msg_payload.(token_pooled) (stor_rates cstate) in

189 let qty := msg_payload.(qty_pooled) in

190 stor_outstanding_tokens cstate’ =

191 stor_outstanding_tokens cstate + rate_in * qty.

192

193
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194 (** Specification of the UNPOOL entrypoint *)

195

196 (* We assume an inverse rate function *)

197 Context { calc_rx_inv : forall (r_x : N) (q : N), N }.

198

199 (*A successful call to UNPOOL means that token_pooled has an exchange rate (=> is in T)*)

200 Definition unpool_entrypoint_check (contract : Contract Setup Msg State Error) : Prop :=

201 forall cstate cstate’ chain ctx msg_payload acts,

202 (* a successful call *)

203 receive contract chain ctx cstate (Some (unpool (msg_payload))) = Ok(cstate’, acts) ->

204 (* an exchange rate exists *)

205 exists r_x,

206 FMap.find msg_payload.(token_unpooled) (stor_rates cstate) = Some r_x.

207

208 Definition unpool_entrypoint_check_2 (contract : Contract Setup Msg State Error) : Prop :=

209 forall cstate cstate’ chain ctx msg_payload acts,

210 (* a successful call *)

211 receive contract chain ctx cstate (Some (unpool (msg_payload))) = Ok(cstate’, acts) ->

212 (* we don’t unpool more than we have in reserves *)

213 qty_unpooled msg_payload <=

214 get_rate (token_unpooled msg_payload) (stor_rates cstate) *

215 get_bal (token_unpooled msg_payload) (stor_tokens_held cstate).

216

217 (* When the UNPOOL entrypoint is successfully called, it emits a BURN call to the

218 pool_token, with q in the payload *)

219 Definition unpool_emits_txns (contract : Contract Setup Msg State Error) : Prop :=

220 forall cstate chain ctx msg_payload cstate’ acts,

221 (* the call to UNPOOL was successful *)

222 receive contract chain ctx cstate (Some (unpool msg_payload)) = Ok(cstate’, acts) ->

223 (* in the acts list there are burn and transfer transactions *)

224 exists burn_data burn_payload transfer_to transfer_data transfer_payload,

225 (* there is a burn call in acts *)

226 let burn_call := (act_call

227 (* calls the pool token address *)

228 (stor_pool_token cstate).(token_address)

229 (* with amount 0 *)

230 0

231 (* with payload burn_payload *)

232 (serialize (FA2Spec.Retire burn_payload))) in

233 (* with has burn_data in the payload *)

234 In burn_data burn_payload /\

235 (* and burn_data has these properties: *)

236 burn_data.(FA2Spec.retire_amount) = msg_payload.(qty_unpooled) /\

237 (* the burned tokens go from the unpooler *)

238 burn_data.(FA2Spec.retiring_party) = ctx.(ctx_from) /\

239 (* there is a transfer call *)

240 let transfer_call := (act_call

241 (* call to the token address *)

242 (msg_payload.(token_unpooled).(token_address))
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243 (* with amount = 0 *)

244 0

245 (* with payload transfer_payload *)

246 (serialize (FA2Spec.Transfer transfer_payload))) in

247 (* with a transfer in it *)

248 In transfer_data transfer_payload /\

249 (* which itself has transfer data *)

250 In transfer_to transfer_data.(FA2Spec.txs) /\

251 (* whose quantity is the quantity pooled *)

252 let r_x := get_rate msg_payload.(token_unpooled) (stor_rates cstate) in

253 transfer_to.(FA2Spec.amount) = msg_payload.(qty_unpooled) / r_x /\

254 (* and these are the only emitted transactions *)

255 (acts = [ burn_call ; transfer_call ] \/

256 acts = [ transfer_call ; burn_call ]).

257

258

259 (*When the UNPOOL entrypoint is successfully called, tokens_held goes down appropriately*)

260 Definition unpool_decreases_tokens_held

261 (contract : Contract Setup Msg State Error) : Prop :=

262 forall cstate chain ctx msg_payload cstate’ acts,

263 (* the call to POOL was successful *)

264 receive contract chain ctx cstate (Some (unpool msg_payload)) = Ok(cstate’, acts) ->

265 (* in cstate’, tokens_held has increased at token *)

266 let token := msg_payload.(token_unpooled) in

267 let r_x := get_rate token (stor_rates cstate) in

268 let qty := calc_rx_inv r_x msg_payload.(qty_unpooled) in

269 let old_bal := get_bal token (stor_tokens_held cstate) in

270 let new_bal := get_bal token (stor_tokens_held cstate’) in

271 new_bal = old_bal - qty /\

272 forall t,

273 t <> token ->

274 get_bal t (stor_tokens_held cstate) =

275 get_bal t (stor_tokens_held cstate’).

276

277 (*When the UNPOOL entrypoint is successfully called, tokens_held goes down appropriately*)

278 Definition unpool_rates_unchanged (contract : Contract Setup Msg State Error) : Prop :=

279 forall cstate cstate’ chain ctx msg_payload acts,

280 (* the call to POOL was successful *)

281 receive contract chain ctx cstate (Some (unpool msg_payload)) = Ok(cstate’, acts) ->

282 (* rates all stay the same *)

283 forall t,

284 FMap.find t (stor_rates cstate) = FMap.find t (stor_rates cstate’).

285

286 (* Defines how the UNPOOL entrypoint updates outstanding tokens *)

287 Definition unpool_outstanding (contract : Contract Setup Msg State Error) : Prop :=

288 forall cstate cstate’ chain ctx msg_payload acts,

289 (* the call to POOL was successful *)

290 receive contract chain ctx cstate (Some (unpool msg_payload)) = Ok(cstate’, acts) ->

291 (* rates all stay the same *)
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292 let rate_in := get_rate msg_payload.(token_unpooled) (stor_rates cstate) in

293 let qty := msg_payload.(qty_unpooled) in

294 stor_outstanding_tokens cstate’ =

295 stor_outstanding_tokens cstate - qty.

296

297 (* A successful call to TRADE means that token_in_trade and token_out_trade have exchange

298 rates (=> are in T) *)

299 Definition trade_entrypoint_check (contract : Contract Setup Msg State Error) : Prop :=

300 forall cstate chain ctx msg_payload cstate’ acts,

301 (* a successful call *)

302 receive contract chain ctx cstate (Some (trade (msg_payload))) = Ok(cstate’, acts) ->

303 (* exchange rates exist *)

304 exists y r_x r_y,

305 ((FMap.find msg_payload.(token_out_trade) (stor_tokens_held cstate) = Some y) /\

306 (FMap.find msg_payload.(token_in_trade) (stor_rates cstate) = Some r_x) /\

307 (FMap.find msg_payload.(token_out_trade) (stor_rates cstate) = Some r_y)).

308

309 (* A successful call to TRADE means that the inputs to the trade calculation are

310 all positive *)

311 Definition trade_entrypoint_check_2 (contract : Contract Setup Msg State Error) : Prop :=

312 forall cstate chain ctx msg_payload cstate’ acts,

313 (* a successful call *)

314 receive contract chain ctx cstate (Some (trade (msg_payload))) = Ok(cstate’, acts) ->

315 (* exchange rates exist *)

316 exists x r_x r_y k,

317 ((FMap.find msg_payload.(token_in_trade) (stor_tokens_held cstate) = Some x) /\

318 (FMap.find msg_payload.(token_in_trade) (stor_rates cstate) = Some r_x) /\

319 (FMap.find msg_payload.(token_out_trade) (stor_rates cstate) = Some r_y) /\

320 (stor_outstanding_tokens cstate = k) /\

321 r_x > 0 /\ r_y > 0 /\ x > 0 /\ k > 0).

322

323 (* Specification of the TRADE entrypoint *)

324 (* We assume the existence of two functions *)

325 Context

326 { calc_delta_y : forall (rate_in : N) (rate_out : N) (qty_trade : N) (k : N) (x : N),

327 N }

328 { calc_rx’ : forall (rate_in : N) (rate_out : N) (qty_trade : N) (k : N) (x : N), N }.

329

330 (* When TRADE is successfully called, the trade is priced using the correct formula

331 given by calculate_trade. The updated rate is also priced using the formula from

332 calculate_trade. *)

333 Definition trade_pricing_formula (contract : Contract Setup Msg State Error) : Prop :=

334 forall cstate chain ctx msg_payload t_x t_y q cstate’ acts,

335 (* the TRADE entrypoint was called succesfully *)

336 t_x = msg_payload.(token_in_trade) ->

337 t_y = msg_payload.(token_out_trade) ->

338 t_x <> t_y ->

339 q = msg_payload.(qty_trade) ->

340 receive contract chain ctx cstate (Some (trade msg_payload)) =
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341 Ok(cstate’, acts) ->

342 (* calculate the diffs delta_x and delta_y *)

343 let delta_x :=

344 (get_bal t_x (stor_tokens_held cstate’)) -

345 (get_bal t_x (stor_tokens_held cstate)) in

346 let delta_y :=

347 (get_bal t_y (stor_tokens_held cstate)) -

348 (get_bal t_y (stor_tokens_held cstate’)) in

349 let rate_in := (get_rate t_x (stor_rates cstate)) in

350 let rate_out := (get_rate t_y (stor_rates cstate)) in

351 let k := (stor_outstanding_tokens cstate) in

352 let x := get_bal t_x (stor_tokens_held cstate) in

353 (* the diff delta_x and delta_y are correct *)

354 delta_x = q /\

355 delta_y = calc_delta_y rate_in rate_out q k x.

356

357

358 Definition trade_update_rates (contract : Contract Setup Msg State Error) : Prop :=

359 forall cstate chain ctx msg_payload cstate’ acts,

360 (* the TRADE entrypoint was called succesfully *)

361 receive contract chain ctx cstate (Some (trade msg_payload)) =

362 Ok(cstate’, acts) ->

363 let t_x := msg_payload.(token_in_trade) in

364 let t_y := msg_payload.(token_out_trade) in

365 t_x <> t_y /\

366 (* calculate the diffs delta_x and delta_y *)

367 let rate_in := (get_rate t_x (stor_rates cstate)) in

368 let rate_out := (get_rate t_y (stor_rates cstate)) in

369 let q := msg_payload.(qty_trade) in

370 let k := (stor_outstanding_tokens cstate) in

371 let x := get_bal t_x (stor_tokens_held cstate) in

372 (* the new rate of t_x is correct *)

373 let r_x’ := calc_rx’ rate_in rate_out q k x in

374 (stor_rates cstate’) =

375 (FMap.add (token_in_trade msg_payload)

376 (calc_rx’

377 (get_rate (token_in_trade msg_payload) (stor_rates cstate))

378 (get_rate (token_out_trade msg_payload) (stor_rates cstate))

379 (qty_trade msg_payload)

380 (stor_outstanding_tokens cstate)

381 (get_bal (token_in_trade msg_payload) (stor_tokens_held cstate)))

382 (stor_rates cstate)).

383

384

385 Definition trade_update_rates_formula

386 (contract : Contract Setup Msg State Error) : Prop :=

387 forall cstate chain ctx msg_payload cstate’ acts,

388 (* the TRADE entrypoint was called succesfully *)

389 receive contract chain ctx cstate (Some (trade msg_payload)) =
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390 Ok(cstate’, acts) ->

391 let t_x := msg_payload.(token_in_trade) in

392 let t_y := msg_payload.(token_out_trade) in

393 t_x <> t_y /\

394 (* calculate the diffs delta_x and delta_y *)

395 let rate_in := (get_rate t_x (stor_rates cstate)) in

396 let rate_out := (get_rate t_y (stor_rates cstate)) in

397 let q := msg_payload.(qty_trade) in

398 let k := (stor_outstanding_tokens cstate) in

399 let x := get_bal t_x (stor_tokens_held cstate) in

400 (* the new rate of t_x is correct *)

401 let r_x’ := calc_rx’ rate_in rate_out q k x in

402 FMap.find t_x (stor_rates cstate’) = Some r_x’ /\

403 (forall t, t <> t_x ->

404 FMap.find t (stor_rates cstate’) =

405 FMap.find t (stor_rates cstate)).

406

407

408 (* When TRADE is successfully called, it emits two TRANSFER actions *)

409 Definition trade_emits_transfers (contract : Contract Setup Msg State Error) : Prop :=

410 forall cstate cstate’ chain ctx msg_payload acts,

411 (* the call to TRADE was successful *)

412 receive contract chain ctx cstate (Some (trade (msg_payload))) = Ok(cstate’, acts) ->

413 (* the acts list consists of two transfer actions, specified as follows: *)

414 exists transfer_to_x transfer_data_x transfer_payload_x

415 transfer_to_y transfer_data_y transfer_payload_y,

416 (* there is a transfer call for t_x *)

417 let transfer_tx := (act_call

418 (* call to the correct token address *)

419 (msg_payload.(token_in_trade).(token_address))

420 (* with amount = 0 *)

421 0

422 (* and payload transfer_payload_x *)

423 (serialize (FA2Spec.Transfer transfer_payload_x))) in

424 (* with a transfer in it *)

425 In transfer_data_x transfer_payload_x /\

426 (* which itself has transfer data *)

427 In transfer_to_x transfer_data_x.(FA2Spec.txs) /\

428 (* whose quantity is the quantity traded, transferred to the contract *)

429 transfer_to_x.(FA2Spec.amount) = msg_payload.(qty_trade) /\

430 transfer_to_x.(FA2Spec.to_) = ctx.(ctx_contract_address) /\

431 (* there is a transfer call for t_y *)

432 let transfer_ty := (act_call

433 (* call to the correct token address *)

434 (msg_payload.(token_out_trade).(token_address))

435 (* with amount = 0 *)

436 0

437 (* and payload transfer_payload_y *)

438 (serialize (FA2Spec.Transfer transfer_payload_y))) in

163



439 (* with a transfer in it *)

440 In transfer_data_y transfer_payload_y /\

441 (* which itself has transfer data *)

442 In transfer_to_y transfer_data_y.(FA2Spec.txs) /\

443 (* whose quantity is the quantity traded, transferred to the contract *)

444 let t_x := msg_payload.(token_in_trade) in

445 let t_y := msg_payload.(token_out_trade) in

446 let rate_in := (get_rate t_x (stor_rates cstate)) in

447 let rate_out := (get_rate t_y (stor_rates cstate)) in

448 let k := (stor_outstanding_tokens cstate) in

449 let x := get_bal t_x (stor_tokens_held cstate) in

450 let q := msg_payload.(qty_trade) in

451 transfer_to_y.(FA2Spec.amount) = calc_delta_y rate_in rate_out q k x /\

452 transfer_to_y.(FA2Spec.to_) = ctx.(ctx_from) /\

453 (* acts is only these two transfers *)

454 (acts = [ transfer_tx ; transfer_ty ] \/

455 acts = [ transfer_ty ; transfer_tx ]).

456

457

458 Definition trade_tokens_held_update (contract : Contract Setup Msg State Error) : Prop :=

459 forall cstate chain ctx msg_payload cstate’ acts,

460 (* the call to TRADE was successful *)

461 receive contract chain ctx cstate (Some (trade (msg_payload))) = Ok(cstate’, acts) ->

462 (* in the new state *)

463 let t_x := msg_payload.(token_in_trade) in

464 let t_y := msg_payload.(token_out_trade) in

465 let rate_in := (get_rate t_x (stor_rates cstate)) in

466 let rate_out := (get_rate t_y (stor_rates cstate)) in

467 let k := (stor_outstanding_tokens cstate) in

468 let x := get_bal t_x (stor_tokens_held cstate) in

469 let delta_x := msg_payload.(qty_trade) in

470 let delta_y := calc_delta_y rate_in rate_out delta_x k x in

471 let prev_bal_y := get_bal t_y (stor_tokens_held cstate) in

472 let prev_bal_x := get_bal t_x (stor_tokens_held cstate) in

473 (* balances update appropriately *)

474 get_bal t_y (stor_tokens_held cstate’) = (prev_bal_y - delta_y) /\

475 get_bal t_x (stor_tokens_held cstate’) = (prev_bal_x + delta_x) /\

476 forall t_z,

477 t_z <> t_x ->

478 t_z <> t_y ->

479 get_bal t_z (stor_tokens_held cstate’) =

480 get_bal t_z (stor_tokens_held cstate).

481

482 Definition trade_outstanding_update (contract : Contract Setup Msg State Error) : Prop :=

483 forall cstate chain ctx msg_payload cstate’ acts,

484 (* the call to TRADE was successful *)

485 receive contract chain ctx cstate (Some (trade (msg_payload))) = Ok(cstate’, acts) ->

486 (* in the new state *)

487 (stor_outstanding_tokens cstate’) = (stor_outstanding_tokens cstate).
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488

489 Definition trade_pricing (contract : Contract Setup Msg State Error) : Prop :=

490 forall cstate chain ctx msg_payload cstate’ acts,

491 (* the call to TRADE was successful *)

492 receive contract chain ctx cstate (Some (trade (msg_payload))) = Ok(cstate’, acts) ->

493 (* balances for t_x change appropriately *)

494 FMap.find (token_in_trade msg_payload) (stor_tokens_held cstate’) =

495 Some (get_bal (token_in_trade msg_payload) (stor_tokens_held cstate) + (qty_trade

msg_payload)) /\

496 (* balances for t_y change appropriately *)

497 let t_x := token_in_trade msg_payload in

498 let t_y := token_out_trade msg_payload in

499 let delta_x := qty_trade msg_payload in

500 let rate_in := (get_rate t_x (stor_rates cstate)) in

501 let rate_out := (get_rate t_y (stor_rates cstate)) in

502 let k := (stor_outstanding_tokens cstate) in

503 let x := get_bal t_x (stor_tokens_held cstate) in

504 (* in the new state *)

505 FMap.find (token_out_trade msg_payload) (stor_tokens_held cstate’) =

506 Some (get_bal (token_out_trade msg_payload) (stor_tokens_held cstate)

507 - (calc_delta_y rate_in rate_out delta_x k x)).

508

509 Definition trade_amounts_nonnegative (contract : Contract Setup Msg State Error) : Prop :=

510 forall cstate chain ctx msg_payload cstate’ acts,

511 (* the call to TRADE was successful *)

512 receive contract chain ctx cstate (Some (trade (msg_payload))) = Ok(cstate’, acts) ->

513 (* delta_x and delta_y are nonnegative *)

514 let t_x := msg_payload.(token_in_trade) in

515 let t_y := msg_payload.(token_out_trade) in

516 let rate_in := (get_rate t_x (stor_rates cstate)) in

517 let rate_out := (get_rate t_y (stor_rates cstate)) in

518 let k := (stor_outstanding_tokens cstate) in

519 let x := get_bal t_x (stor_tokens_held cstate) in

520 let delta_x := msg_payload.(qty_trade) in

521 let delta_y := calc_delta_y rate_in rate_out delta_x k x in

522 0 <= delta_x /\

523 0 <= delta_y.

524

525 (* Specification of all other entrypoints *)

526 Definition other_rates_unchanged (contract : Contract Setup Msg State Error) : Prop :=

527 forall cstate cstate’ chain ctx o acts,

528 (* the call to POOL was successful *)

529 receive contract chain ctx cstate (other o) = Ok(cstate’, acts) ->

530 (* rates all stay the same *)

531 forall t,

532 FMap.find t (stor_rates cstate) = FMap.find t (stor_rates cstate’).

533

534 Definition other_balances_unchanged (contract : Contract Setup Msg State Error) : Prop :=

535 forall cstate cstate’ chain ctx o acts,
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536 (* the call to POOL was successful *)

537 receive contract chain ctx cstate (other o) = Ok(cstate’, acts) ->

538 (* balances all stay the same *)

539 forall t,

540 FMap.find t (stor_tokens_held cstate) = FMap.find t (stor_tokens_held cstate’).

541

542 Definition other_outstanding_unchanged (contract : Contract Setup Msg State Error) : Prop

:=

543 forall cstate cstate’ chain ctx o acts,

544 (* the call to POOL was successful *)

545 receive contract chain ctx cstate (other o) = Ok(cstate’, acts) ->

546 (* balances all stay the same *)

547 (stor_outstanding_tokens cstate) = (stor_outstanding_tokens cstate’).

548

549 (** Specification of the functions calc_rx’ and calc_delta_y

550 - This specification distils the features of trading along a convex curve which are

551 relevant to the correct functioning of structured pools.

552 - While these are supposed to be nontrivial functions that simulate trading along

553 a convex curve, ‘calc_rx’‘, ‘calc_delta_y‘, and ‘calc_rx_inv‘ can be made trivial

554 by setting all rates to 1, setting the first function to the identity function,

555 the second to multiplication by r_x = 1, and the third to division by r_x = 1

556 *)

557

558 (* update_rate function returns positive number if the num, denom are positive *)

559 Definition update_rate_stays_positive :=

560 forall r_x r_y delta_x k x,

561 let r_x’ := calc_rx’ r_x r_y delta_x k x in

562 r_x > 0 ->

563 r_x’ > 0.

564

565 (* r_x’ <= r_x *)

566 Definition rate_decrease :=

567 forall r_x r_y delta_x k x,

568 let r_x’ := calc_rx’ r_x r_y delta_x k x in

569 r_x’ <= r_x.

570

571 (* the inverse rate function is a right inverse of r_x *)

572 Definition rates_balance :=

573 forall q t rates prev_state,

574 let r_x := get_rate t rates in

575 let x := get_bal t (stor_tokens_held prev_state) in

576 r_x * calc_rx_inv r_x q = q.

577

578 Definition rates_balance_2 :=

579 forall t prev_state,

580 let r_x’ := calc_rx’ (get_rate (token_in_trade t) (stor_rates prev_state))

581 (get_rate (token_out_trade t) (stor_rates prev_state)) (qty_trade t) (

stor_outstanding_tokens prev_state)

582 (get_bal (token_in_trade t) (stor_tokens_held prev_state)) in
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583 let delta_y := calc_delta_y (get_rate (token_in_trade t) (stor_rates prev_state))

584 (get_rate (token_out_trade t) (stor_rates prev_state)) (qty_trade t) (

stor_outstanding_tokens prev_state)

585 (get_bal (token_in_trade t) (stor_tokens_held prev_state)) in

586 let r_x := get_rate (token_in_trade t) (stor_rates prev_state) in

587 let x := get_bal (token_in_trade t) (stor_tokens_held prev_state) in

588 let y := get_bal (token_out_trade t) (stor_tokens_held prev_state) in

589 let r_y:= get_rate (token_out_trade t) (stor_rates prev_state) in

590 r_x’ * (x + qty_trade t) + r_y * (y - delta_y) =

591 r_x * x + r_y * y.

592

593 (* the trade always does slightly worse than predicted *)

594 Definition trade_slippage :=

595 forall r_x r_y delta_x k x,

596 let delta_y := calc_delta_y r_x r_y delta_x k x in

597 r_y * delta_y <= r_x * delta_x.

598 Definition trade_slippage_2 :=

599 forall r_x r_y delta_x k x,

600 let delta_y := calc_delta_y r_x r_y delta_x k x in

601 let r_x’ := calc_rx’ r_x r_y delta_x k x in

602 r_y * delta_y <= r_x’ * delta_x.

603

604 (* rates have no positive lower bound *)

605 Definition arbitrage_lt :=

606 forall rate_x rate_y ext k x,

607 0 < ext ->

608 ext < rate_x ->

609 exists delta_x,

610 calc_rx’ rate_x rate_y delta_x k x <= ext.

611

612 (* calc_delta_y has no positive upper bound *)

613 Definition arbitrage_gt :=

614 forall rate_x rate_y ext_goal k x,

615 rate_x > 0 /\

616 rate_y > 0 /\

617 x > 0 /\

618 k > 0 ->

619 exists delta_x,

620 ext_goal <= calc_delta_y rate_x rate_y delta_x k x.

621

622 (* Initialization specification *)

623 Definition initialized_with_positive_rates (contract : Contract Setup Msg State Error) :=

624 forall chain ctx setup cstate,

625 (* If the contract initializes successfully *)

626 init contract chain ctx setup = Ok cstate ->

627 (* then all rates are nonzero *)

628 forall t r,

629 FMap.find t (stor_rates cstate) = Some r ->

630 r > 0.
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631 Definition initialized_with_zero_balance (contract : Contract Setup Msg State Error) :=

632 forall chain ctx setup cstate,

633 (* If the contract initializes successfully *)

634 init contract chain ctx setup = Ok cstate ->

635 (* then all token balances initialize to zero *)

636 forall t,

637 get_bal t (stor_tokens_held cstate) = 0.

638

639 Definition initialized_with_zero_outstanding (contract : Contract Setup Msg State Error)

:=

640 forall chain ctx setup cstate,

641 (* If the contract initializes successfully *)

642 init contract chain ctx setup = Ok cstate ->

643 (* then there are no outstanding tokens *)

644 stor_outstanding_tokens cstate = 0.

645

646 Definition initialized_with_init_rates (contract : Contract Setup Msg State Error) :=

647 forall chain ctx setup cstate,

648 (* If the contract initializes successfully *)

649 init contract chain ctx setup = Ok cstate ->

650 (* then the init rates map is the same as given in the setup *)

651 (stor_rates cstate) = (init_rates setup).

652

653 Definition initialized_with_pool_token (contract : Contract Setup Msg State Error) :=

654 forall chain ctx setup cstate,

655 (* If the contract initializes successfully *)

656 init contract chain ctx setup = Ok cstate ->

657 (* then the pool token is the same as given in the setup *)

658 (stor_pool_token cstate) = (init_pool_token setup).

A.1.3 The Formal Specification Predicate

Listing A.6: The amalgamation of the propositions of the specification of Listing ?? into a single predicate

on smart contracts, which is the formal specification of a structured pool contract.

1 Definition is_structured_pool

2 (C : Contract Setup Msg State Error) : Prop :=

3 none_fails C /\

4 msg_destruct C /\

5 (* pool entrypoint specification *)

6 pool_entrypoint_check C /\

7 pool_emits_txns C /\

8 pool_increases_tokens_held C /\

9 pool_rates_unchanged C /\

10 pool_outstanding C /\

11 (* unpool entrypoint specification *)

12 unpool_entrypoint_check C /\
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13 unpool_entrypoint_check_2 C /\

14 unpool_emits_txns C /\

15 unpool_decreases_tokens_held C /\

16 unpool_rates_unchanged C /\

17 unpool_outstanding C /\

18 (* trade entrypoint specification *)

19 trade_entrypoint_check C /\

20 trade_entrypoint_check_2 C /\

21 trade_pricing_formula C /\

22 trade_update_rates C /\

23 trade_update_rates_formula C /\

24 trade_emits_transfers C /\

25 trade_tokens_held_update C /\

26 trade_outstanding_update C /\

27 trade_pricing C /\

28 trade_amounts_nonnegative C /\

29 (* specification of all other entrypoints *)

30 other_rates_unchanged C /\

31 other_balances_unchanged C /\

32 other_outstanding_unchanged C /\

33 (* specification of calc_rx’ and calc_delta_y *)

34 update_rate_stays_positive /\

35 rate_decrease /\

36 rates_balance /\

37 rates_balance_2 /\

38 trade_slippage /\

39 trade_slippage_2 /\

40 arbitrage_lt /\

41 arbitrage_gt /\

42 (* initialization specification *)

43 initialized_with_positive_rates C /\

44 initialized_with_zero_balance C /\

45 initialized_with_zero_outstanding C /\

46 initialized_with_init_rates C /\

47 initialized_with_pool_token C.

169



A.2 Formal Metaspecification

Here we include the formalization and proofs of each property of the metaspecification in Chapter 4.

A.2.1 Demand Sensitivity

Property 1 (Demand Sensitivity). Let tx and ty be tokens in our family with nonzero pooled liquidity

and exchange rates rx, ry > 0. In a trade tx to ty, as rx is updated to r′x, it decereases relative to rz for

all z ̸= x, and ry strictly increases relative to rx.

Listing A.7: The formalization and proof of Demand Sensitivity, Property 1.

1 Theorem demand_sensitivity cstate :

2 (* For all tokens t_x t_y, rates r_x r_y, and quantities x and y, where *)

3 forall t_x r_x x t_y r_y y,

4 (* t_x is a token with nonzero pooled liquidity and with rate r_x > 0, and *)

5 FMap.find t_x (stor_tokens_held cstate) = Some x /\ x > 0 /\

6 FMap.find t_x (stor_rates cstate) = Some r_x /\ r_x > 0 ->

7 (* t_y is a token with nonzero pooled liquidity and with rate r_y > 0 *)

8 FMap.find t_y (stor_tokens_held cstate) = Some y /\ y > 0 /\

9 FMap.find t_y (stor_rates cstate) = Some r_y /\ r_y > 0 ->

10 (* In a trade t_x to t_y ... *)

11 forall chain ctx msg msg_payload acts cstate’,

12 (* i.e.: a successful call to the contract *)

13 receive contract chain ctx cstate (Some msg) = Ok(cstate’, acts) ->

14 (* which is a trade *)

15 msg = trade msg_payload ->

16 (* from t_x to t_y *)

17 msg_payload.(token_in_trade) = t_x ->

18 msg_payload.(token_out_trade) = t_y ->

19 (* with t_x <> t_y *)

20 t_x <> t_y ->

21 (* ... as r_x is updated to r_x’: ... *)

22 let r_x’ := get_rate t_x (stor_rates cstate’) in

23 (* (1) r_x decreases relative to all rates r_z, for t_z <> t_x, and *)

24 (forall t_z,

25 t_z <> t_x ->

26 let r_z := get_rate t_z (stor_rates cstate) in

27 let r_z’ := get_rate t_z (stor_rates cstate’) in

28 rel_decr r_x r_z r_x’ r_z’) /\

29 (* (2) r_y strictly increases relative to r_x *)

30 let t_y := msg_payload.(token_out_trade) in

31 let r_y := get_rate t_y (stor_rates cstate) in

32 let r_y’ := get_rate t_y (stor_rates cstate’) in

33 rel_incr r_y r_x r_y’ r_x’.
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Listing A.8: Definitions and lemmas supporting the formal definition and proof of Demand Sensitivity.

1 (* x decreases relative to z as x => x’, z => z’ : z - x <= z’ - x’ *)

2 Definition rel_decr (x z x’ z’ : N) :=

3 ((Z.of_N z) - (Z.of_N x) <= (Z.of_N z’) - (Z.of_N x’))%Z.

4

5 Lemma rel_decr_lem : forall x x’ z : N, x’ <= x -> rel_decr x z x’ z.

6

7 (* y increases relative to x as y => y’, x => x’ : y - x <= y’ - x’ *)

8 Definition rel_incr (y x y’ x’ : N) :=

9 ((Z.of_N y) - (Z.of_N x) <= (Z.of_N y’) - (Z.of_N x’))%Z.

10

11 Lemma rel_incr_lem : forall x x’ y : N, x’ <= x -> rel_incr y x y x’.

A.2.2 Nonpathological Prices

Property 2 (Nonpathological Prices). For a token tx in T , if there is a contract state such that rx > 0,

then rx > 0 holds for all future states of the contract.

Listing A.9: The formalization and proof of Nonpathological Prices, Property 2.

1 Theorem nonpathological_prices bstate caddr :

2 (* reachable state with contract at caddr *)

3 reachable bstate ->

4 env_contracts bstate caddr = Some (contract : WeakContract) ->

5 (* the statement *)

6 exists (cstate : State),

7 contract_state bstate caddr = Some cstate /\

8 (* For a token t_x in T and rate r_x, *)

9 forall t_x r_x,

10 (* if r_x is the exchange rate of t_x, then r_x > 0 *)

11 FMap.find t_x (stor_rates cstate) = Some r_x -> r_x > 0.

A.2.3 Swap Rate Consistency

Property 3 (Swap Rate Consistency). Let tx be a token in our family with nonzero pooled liquidity and

rx > 0. Then for any ∆x > 0 there is no sequence of trades, beginning and ending with tx, such that

∆′
x > ∆x, where ∆′

x is the output quantity of the sequence of trades.
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Listing A.10: The formalization and proof of Swap Rate Consistency, Property 3.

1 Theorem swap_rate_consistency bstate cstate :

2 (* Let t_x be a token with nonzero pooled liquidity and rate r_x > 0 *)

3 forall t_x r_x x,

4 FMap.find t_x (stor_rates cstate) = Some r_x /\ r_x > 0 ->

5 FMap.find t_x (stor_tokens_held cstate) = Some x /\ x > 0 ->

6 (*then for any delta_x > 0 and any sequence of trades, beginning and ending with t_x*)

7 forall delta_x (trade_sequence : list trade_sequence_type) t_fst t_last,

8 delta_x > 0 ->

9 (* trade_sequence is a list of successive trades *)

10 are_successive_trades trade_sequence ->

11 (* with a first and last trade, t_fst and t_last respectively, *)

12 (hd_error trade_sequence) = Some t_fst ->

13 (hd_error (rev trade_sequence)) = Some t_last ->

14 (* starting from our current bstate and cstate *)

15 seq_chain t_fst = bstate ->

16 seq_cstate t_fst = cstate ->

17 (* the first trade is from t_x *)

18 token_in_trade (seq_trade_data t_fst) = t_x ->

19 qty_trade (seq_trade_data t_fst) = delta_x ->

20 (* the last trade is to t_x *)

21 token_out_trade (seq_trade_data t_last) = t_x ->

22 FMap.find t_x (stor_rates cstate) = FMap.find t_x (stor_rates (seq_cstate t_last)) ->

23 (* delta_x’, the output of the last trade, is never larger than delta_x. *)

24 let delta_x’ := trade_to_delta_y t_last in

25 delta_x’ <= delta_x.

26 Proof.

27 intros * H_rate H_held * dx_geq_0 trades_successive fst_txn lst_txn start_bstate

start_cstate from_tx trade_delta_x to_tx one_tx_txn *.

28 unfold delta_x’.

29 rewrite <- trade_delta_x.

30 apply (geq_list_is_sufficient trade_sequence t_x t_fst t_last cstate r_x); auto.

31 now apply swap_rate_lemma.

32 Qed.

Listing A.11: Definitions and lemmas relevant to the formal definition of Swap Rate Consistency

1 (* first a type to describe successive trades *)

2 Record trade_sequence_type := build_trade_sequence_type {

3 seq_chain : ChainState ;

4 seq_ctx : ContractCallContext ;

5 seq_cstate : State ;

6 seq_trade_data : trade_data ;

7 seq_res_acts : list ActionBody ;

8 }.

9

10 (* a function to calculate the the trade output of the final trade, delta_x’ *)

11 Definition trade_to_delta_y (t : trade_sequence_type) :=

12 let cstate := seq_cstate t in
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13 let token_in := token_in_trade (seq_trade_data t) in

14 let token_out := token_out_trade (seq_trade_data t) in

15 let rate_in := get_rate token_in (stor_rates cstate) in

16 let rate_out := get_rate token_out (stor_rates cstate) in

17 let delta_x := qty_trade (seq_trade_data t) in

18 let k := stor_outstanding_tokens cstate in

19 let x := get_bal token_in (stor_tokens_held cstate) in

20 (* the calculation *)

21 calc_delta_y rate_in rate_out delta_x k x.

22

23 (* a proposition that indicates a list of trades are successive, successful trades *)

24 Fixpoint are_successive_trades (trade_sequence : list trade_sequence_type) : Prop :=

25 match trade_sequence with

26 | [] => True

27 | t1 :: l =>

28 match l with

29 | [] =>

30 (* if the list has one element, it just has to succeed *)

31 exists cstate’ acts,

32 receive contract

33 (seq_chain t1)

34 (seq_ctx t1)

35 (seq_cstate t1)

36 (Some (trade (seq_trade_data t1)))

37 = Ok(cstate’, acts)

38 | t2 :: l’ =>

39 (* the trade t1 goes through, connecting t1 and t2 *)

40 receive contract

41 (seq_chain t1)

42 (seq_ctx t1)

43 (seq_cstate t1)

44 (Some (trade (seq_trade_data t1)))

45 = Ok(seq_cstate t2, seq_res_acts t2) /\

46 (qty_trade (seq_trade_data t2) = trade_to_delta_y t1) /\

47 (token_in_trade (seq_trade_data t2) = token_out_trade (seq_trade_data t1)) /\

48 (are_successive_trades l)

49 end

50 end.

51

52 Fixpoint geq_list (l : list N) : Prop :=

53 match l with

54 | [] => True

55 | h :: tl =>

56 match tl with

57 | [] => True

58 | h’ :: tl’ => (h >= h’) /\ geq_list tl

59 end

60 end.
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Listing A.12: The two lemmas that constitue the essence of the formal proof of Swap Rate Consistency.

1 Lemma geq_list_is_sufficient : forall trade_sequence t_x t_fst t_last cstate r_x,

2 (* more assumptions *)

3 (hd_error trade_sequence) = Some t_fst ->

4 (hd_error (rev trade_sequence)) = Some t_last ->

5 token_in_trade (seq_trade_data t_fst) = t_x ->

6 token_out_trade (seq_trade_data t_last) = t_x ->

7 seq_cstate t_fst = cstate ->

8 FMap.find t_x (stor_rates cstate) = Some r_x /\ r_x > 0 ->

9 FMap.find t_x (stor_rates cstate) = FMap.find t_x (stor_rates (seq_cstate t_last)) ->

10 (* the statement *)

11 geq_list (map trade_to_ry_delta_y trade_sequence) ->

12 let delta_x := qty_trade (seq_trade_data t_fst) in

13 let delta_x’ := trade_to_delta_y t_last in

14 delta_x’ <= delta_x.

15

16 Lemma swap_rate_lemma : forall trade_sequence,

17 (* if this is a list of successive trades *)

18 are_successive_trades trade_sequence ->

19 (* then *)

20 geq_list (map trade_to_ry_delta_y trade_sequence).

Listing A.13: Definitions relevant to the formal definition and proof of the two auxiliary lemmas of the

proof of Swap Rate Consistency.

1 Definition trade_to_ry_delta_y (t : trade_sequence_type) :=

2 let delta_y := trade_to_delta_y t in

3 let rate_y := get_rate (token_out_trade (seq_trade_data t)) (stor_rates (seq_cstate t)

) in

4 rate_y * delta_y.

A.2.4 Zero-Impact Liquidity Change

Property 4 (Zero-Impact Liquidity Change). The quoted price of trades is unaffected by calling DEPOSIT

and WITHDRAW.

Listing A.14: The formalization and proof of Zero-Impact Liquidity Change, Property 4.

1 Theorem zero_impact_liquidity_change :

2 (* Consider the quoted price of a trade t_x to t_y at cstate, *)

3 forall cstate t_x t_y r_x r_y,

4 FMap.find t_x (stor_rates cstate) = Some r_x ->

5 FMap.find t_y (stor_rates cstate) = Some r_y ->

6 let quoted_price := r_x / r_y in

7 (* and a successful POOL or UNPOOL action. *)

8 forall chain ctx msg payload_pool payload_unpool acts cstate’ r_x’ r_y’,
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9 receive contract chain ctx cstate (Some msg) = Ok(cstate’, acts) ->

10 msg = pool payload_pool \/

11 msg = unpool payload_unpool ->

12 (* Then take the (new) quoted price of a trade t_x to t_y at cstate’. *)

13 FMap.find t_x (stor_rates cstate’) = Some r_x’ ->

14 FMap.find t_y (stor_rates cstate’) = Some r_y’ ->

15 let quoted_price’ := r_x’ / r_y’ in

16 (* The quoted price is unchanged. *)

17 quoted_price = quoted_price’.

A.2.5 Arbitrage Sensitivity

Property 5 (Arbitrage sensitivity). Let tx be a token in our family with nonzero pooled liquidity and

rx > 0. If an external, demand-sensitive market prices tx differently from the structured pool, then

assuming sufficient liquidity, with a sufficiently large transaction either the price of tx in the structured

pool converges with the external market, or the trade depletes the pool of tx.

1 Theorem arbitrage_sensitivity :

2 forall cstate t_x r_x x,

3 (* t_x is a token with nonzero pooled liquidity *)

4 FMap.find t_x (stor_rates cstate) = Some r_x /\ r_x > 0 /\

5 FMap.find t_x (stor_tokens_held cstate) = Some x /\ x > 0 ->

6 (* we consider some external price *)

7 forall external_price,

8 0 < external_price ->

9 (* and a trade of trade_qty succeeds *)

10 forall chain ctx msg msg_payload cstate’ acts,

11 receive contract chain ctx cstate msg = Ok(cstate’, acts) ->

12 msg = Some(trade msg_payload) ->

13 t_x = (token_in_trade msg_payload) ->

14 (* the arbitrage opportunity is resolved *)

15 let r_x’ := get_rate t_x (stor_rates cstate’) in

16 (* first the case that the external price was lower *)

17 (external_price < r_x ->

18 exists trade_qty,

19 msg_payload.(qty_trade) = trade_qty ->

20 external_price >= r_x’) /\

21 (* second the case that the external price is higher *)

22 (external_price > r_x ->

23 exists trade_qty,

24 msg_payload.(qty_trade) = trade_qty ->

25 external_price <= r_x’ \/

26 let t_y := token_out_trade msg_payload in

27 let r_y := get_rate t_y (stor_rates cstate) in

28 let x := get_bal t_x (stor_tokens_held cstate) in

29 let y := get_bal t_y (stor_tokens_held cstate) in
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30 let balances := (stor_tokens_held cstate) in

31 let k := (stor_outstanding_tokens cstate) in

32 get_bal t_y balances <= calc_delta_y r_x r_y trade_qty k x).

Listing A.15: The formalization and proof of Arbitrage Sensitivity, Property 5.

A.2.6 Pooled Consistency

Property 6 (Pooled Consistency). The following equation always holds:

∑
tx

rxx = k (A.1)

Listing A.16: The formalization and proof of Pooled Consistency, Property 6.

1 Theorem pooled_consistency bstate caddr :

2 reachable bstate ->

3 env_contracts bstate caddr = Some (contract : WeakContract) ->

4 exists (cstate : State),

5 contract_state bstate caddr = Some cstate /\

6 (* The sum of all the constituent, pooled tokens, multiplied by their value in terms

7 of pooled tokens, always equals the total number of outstanding pool tokens. *)

8 suml (tokens_to_values (stor_rates cstate) (stor_tokens_held cstate)) =

9 (stor_outstanding_tokens cstate).

Listing A.17: Definitions and lemmas supporting the formal definition and proof of Pooled Consistency.

1 (* map over the keys *)

2 Definition tokens_to_values

3 (rates : FMap token exchange_rate) (tokens_held : FMap token N) : list N :=

4 List.map

5 (fun k =>

6 let rate := get_rate k rates in

7 let qty_held := get_bal k tokens_held in

8 rate * qty_held)

9 (FMap.keys rates).

10

11 (* take the sum of a list *)

12 Definition suml l := fold_right N.add 0 l.
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Appendix B

Proofs and Definitions of Chapter 5

B.1 Contract Morphisms

Listing B.1: The formal definition of a contract morphism.

1 Section MorphismDefinition.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}.

4

5 (** The definition *)

6 Record ContractMorphism

7 (C1 : Contract Setup1 Msg1 State1 Error1)

8 (C2 : Contract Setup2 Msg2 State2 Error2) :=

9 build_contract_morphism {

10 (* the components of a morphism f *)

11 setup_morph : Setup1 -> Setup2 ;

12 msg_morph : Msg1 -> Msg2 ;

13 state_morph : State1 -> State2 ;

14 error_morph : Error1 -> Error2 ;

15 (* coherence conditions *)

16 init_coherence : forall c ctx s,

17 result_functor state_morph error_morph

18 (init C1 c ctx s) =

19 init C2 c ctx (setup_morph s) ;

20 recv_coherence : forall c ctx st op_msg,

21 result_functor (fun ’(st, l) => (state_morph st, l)) error_morph

22 (receive C1 c ctx st op_msg) =

23 receive C2 c ctx (state_morph st) (option_map msg_morph op_msg) ;

24 }.

25

26 End MorphismDefinition.
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Listing B.2: The definition of result functor.

1 Definition result_functor {T T’ E E’ : Type} : (T -> T’) -> (E -> E’) -> result T E ->

result T’ E’ :=

2 fun (f_t : T -> T’) (f_e : E -> E’) (res : result T E) =>

3 match res with | Ok t => Ok (f_t t) | Err e => Err (f_e e) end.

Listing B.3: The identity contract morphism.

1 Section IdentityMorphism.

2 Context ‘{Serializable Msg} ‘{Serializable Setup} ‘{Serializable State} ‘{Serializable

Error}.

3

4 Lemma init_coherence_id (C : Contract Setup Msg State Error) :

5 forall c ctx s,

6 result_functor id id (init C c ctx s) =

7 init C c ctx s.

8 Proof.

9 intros.

10 unfold result_functor.

11 now destruct (init C c ctx s).

12 Qed.

13

14 Lemma recv_coherence_id (C : Contract Setup Msg State Error) :

15 forall c ctx st op_msg,

16 result_functor

17 (fun ’(st, l) => (id st, l)) id

18 (receive C c ctx st op_msg) =

19 receive C c ctx (id st) (option_map id op_msg).

20 Proof.

21 intros.

22 unfold result_functor, option_map. cbn.

23 destruct op_msg.

24 - now destruct (receive C c ctx st (Some m)); try destruct t.

25 - now destruct (receive C c ctx st None); try destruct t.

26 Qed.

27

28 (** The identity morphism *)

29 Definition id_cm (C : Contract Setup Msg State Error) : ContractMorphism C C := {|

30 (* components *)

31 setup_morph := id ;

32 msg_morph := id ;

33 state_morph := id ;

34 error_morph := id ;

35 (* coherence conditions *)

36 init_coherence := init_coherence_id C ;

37 recv_coherence := recv_coherence_id C ;

38 |}.
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39

40 End IdentityMorphism.

Listing B.4: The formal definition of a contract injection and surjection.

1 Section Injections.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 {C1 : Contract Setup1 Msg1 State1 Error1}

5 {C2 : Contract Setup2 Msg2 State2 Error2}.

6

7 Definition is_inj {A B : Type} (f : A -> B) : Prop :=

8 forall (a a’ : A), f a = f a’ -> a = a’.

9

10 Lemma is_inj_compose {A B C : Type} :

11 forall (f1 : A -> B) (f2 : B -> C),

12 is_inj f1 ->

13 is_inj f2 ->

14 is_inj (compose f2 f1).

15 Proof.

16 intros * f1_inj f2_inj.

17 unfold is_inj in *.

18 intros * H_compose.

19 simpl in H_compose.

20 apply f2_inj in H_compose.

21 now apply f1_inj in H_compose.

22 Qed.

23

24 (* A morphism is a *weak embedding* if it embeds the message and storage types *)

25 Definition is_weak_inj_cm (f : ContractMorphism C1 C2) : Prop :=

26 is_inj (msg_morph C1 C2 f) /\

27 is_inj (state_morph C1 C2 f).

28

29 Definition contract_weakly_embeds : Prop :=

30 exists (f : ContractMorphism C1 C2), is_weak_inj_cm f.

31

32 (* A morphism is an embedding if it embeds on all contract types *)

33 Definition is_inj_cm (f : ContractMorphism C1 C2) : Prop :=

34 is_inj (setup_morph C1 C2 f) /\

35 is_inj (msg_morph C1 C2 f) /\

36 is_inj (state_morph C1 C2 f) /\

37 is_inj (error_morph C1 C2 f).

38

39 Definition contract_embeds : Prop :=

40 exists (f : ContractMorphism C1 C2), is_inj_cm f.

41

42 End Injections.
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43

44

45 (** Surjective contract morphisms *)

46 Section Surjections.

47 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

48 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

49 {C1 : Contract Setup1 Msg1 State1 Error1}

50 {C2 : Contract Setup2 Msg2 State2 Error2}.

51

52 Definition is_surj {A B : Type} (f : A -> B) : Prop :=

53 forall (b : B), exists (a : A), f a = b.

54

55 (* A morphism is a *weak quotient* if it embeds on all contract types *)

56 Definition is_weak_surj_cm (f : ContractMorphism C1 C2) : Prop :=

57 is_surj (msg_morph C1 C2 f) /\

58 is_surj (state_morph C1 C2 f).

59

60 Definition contract_weakly_surjects : Prop :=

61 exists (f : ContractMorphism C1 C2), is_weak_surj_cm f.

62

63 (* A morphism is a surjection if it surjects on all contract types *)

64 Definition is_surj_cm (f : ContractMorphism C1 C2) : Prop :=

65 is_surj (setup_morph C1 C2 f) /\

66 is_surj (msg_morph C1 C2 f) /\

67 is_surj (state_morph C1 C2 f) /\

68 is_surj (error_morph C1 C2 f).

69

70 Definition contract_surjects : Prop :=

71 exists (f : ContractMorphism C1 C2), is_surj_cm f.

72

73 End Surjections.

Listing B.5: Equality of contract morphisms.

1 Section EqualityOfMorphisms.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 {C1 : Contract Setup1 Msg1 State1 Error1}

5 {C2 : Contract Setup2 Msg2 State2 Error2}.

6

7 Lemma eq_cm :

8 forall (f g : ContractMorphism C1 C2),

9 (* if the components are equal ... *)

10 (setup_morph C1 C2 f) = (setup_morph C1 C2 g) ->

11 (msg_morph C1 C2 f) = (msg_morph C1 C2 g) ->

180



12 (state_morph C1 C2 f) = (state_morph C1 C2 g) ->

13 (error_morph C1 C2 f) = (error_morph C1 C2 g) ->

14 (* ... then the morphisms are equal *)

15 f = g.

16 Proof.

17 intros f g.

18 destruct f, g.

19 cbn.

20 intros msg_eq set_eq st_eq err_eq.

21 subst.

22 f_equal;

23 apply proof_irrelevance.

24 Qed.

25

26 Lemma eq_cm_rev :

27 forall (f g : ContractMorphism C1 C2),

28 (* if the morphisms are equal ... *)

29 f = g ->

30 (* ... then the components are equal *)

31 (setup_morph C1 C2 f) = (setup_morph C1 C2 g) /\

32 (msg_morph C1 C2 f) = (msg_morph C1 C2 g) /\

33 (state_morph C1 C2 f) = (state_morph C1 C2 g) /\

34 (error_morph C1 C2 f) = (error_morph C1 C2 g).

35 Proof.

36 intros f g fg_eq.

37 now inversion fg_eq.

38 Qed.

39

40 Lemma eq_cm_iff :

41 forall (f g : ContractMorphism C1 C2),

42 (* the components are equal ... *)

43 (setup_morph C1 C2 f) = (setup_morph C1 C2 g) /\

44 (msg_morph C1 C2 f) = (msg_morph C1 C2 g) /\

45 (state_morph C1 C2 f) = (state_morph C1 C2 g) /\

46 (error_morph C1 C2 f) = (error_morph C1 C2 g) <->

47 (* ... iff the morphisms are equal *)

48 f = g.

49 Proof.

50 intros.

51 split.

52 - intro H_components.

53 destruct H_components as [H_set [H_msg [H_st H_err]]].

54 now apply eq_cm.

55 - now apply eq_cm_rev.

56 Qed.

57

58 End EqualityOfMorphisms.
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B.1.1 Composition of Morphisms

Listing B.6: Composition of contract morphisms.

1 Section MorphismComposition.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

5 { C1 : Contract Setup1 Msg1 State1 Error1 }

6 { C2 : Contract Setup2 Msg2 State2 Error2 }

7 { C3 : Contract Setup3 Msg3 State3 Error3 }.

8

9 Lemma compose_init_coh (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

10 let setup_morph’ := (compose (setup_morph C2 C3 g) (setup_morph C1 C2 f)) in

11 let state_morph’ := (compose (state_morph C2 C3 g) (state_morph C1 C2 f)) in

12 let error_morph’ := (compose (error_morph C2 C3 g) (error_morph C1 C2 f)) in

13 forall c ctx s,

14 result_functor state_morph’ error_morph’

15 (init C1 c ctx s) =

16 init C3 c ctx (setup_morph’ s).

17 Proof.

18 intros.

19 unfold setup_morph’.

20 cbn.

21 rewrite <- (init_coherence C2 C3 g).

22 rewrite <- (init_coherence C1 C2 f).

23 unfold result_functor.

24 now destruct (init C1 c ctx s).

25 Qed.

26

27 Lemma compose_recv_coh (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

28 let msg_morph’ := (compose (msg_morph C2 C3 g) (msg_morph C1 C2 f)) in

29 let state_morph’ := (compose (state_morph C2 C3 g) (state_morph C1 C2 f)) in

30 let error_morph’ := (compose (error_morph C2 C3 g) (error_morph C1 C2 f)) in

31 forall c ctx st op_msg,

32 result_functor

33 (fun ’(st, l) => (state_morph’ st, l)) error_morph’

34 (receive C1 c ctx st op_msg) =

35 receive C3 c ctx (state_morph’ st) (option_map msg_morph’ op_msg).

36 Proof.

37 intros.

38 pose proof (recv_coherence C2 C3 g).

39 pose proof (recv_coherence C1 C2 f).

40 unfold state_morph’, msg_morph’.

41 cbn.

42 replace (option_map (compose (msg_morph C2 C3 g) (msg_morph C1 C2 f)) op_msg)

43 with (option_map (msg_morph C2 C3 g) (option_map (msg_morph C1 C2 f) op_msg)).
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44 2:{ now destruct op_msg. }

45 rewrite <- H11.

46 rewrite <- H12.

47 unfold result_functor.

48 now destruct (receive C1 c ctx st op_msg).

49 Qed.

50

51 (** Composition *)

52 Definition compose_cm (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

53 ContractMorphism C1 C3 := {|

54 (* the components *)

55 setup_morph := compose (setup_morph C2 C3 g) (setup_morph C1 C2 f) ;

56 msg_morph := compose (msg_morph C2 C3 g) (msg_morph C1 C2 f) ;

57 state_morph := compose (state_morph C2 C3 g) (state_morph C1 C2 f) ;

58 error_morph := compose (error_morph C2 C3 g) (error_morph C1 C2 f) ;

59 (* the coherence results *)

60 init_coherence := compose_init_coh g f ;

61 recv_coherence := compose_recv_coh g f ;

62 |}.

63

64 End MorphismComposition.

Listing B.7: Some results on contract morphisms.

1 Section MorphismCompositionResults.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

5 ‘{Serializable Setup4} ‘{Serializable Msg4} ‘{Serializable State4} ‘{Serializable

Error4}

6 { C1 : Contract Setup1 Msg1 State1 Error1 }

7 { C2 : Contract Setup2 Msg2 State2 Error2 }

8 { C3 : Contract Setup3 Msg3 State3 Error3 }

9 { C4 : Contract Setup4 Msg4 State4 Error4 }.

10

11 (** Composition with the Identity morphism is trivial *)

12 Lemma compose_id_cm_left (f : ContractMorphism C1 C2) :

13 compose_cm (id_cm C2) f = f.

14 Proof.

15 now apply eq_cm.

16 Qed.

17

18 Lemma compose_id_cm_right (f : ContractMorphism C1 C2) :

19 compose_cm f (id_cm C1) = f.

20 Proof.

21 now apply eq_cm.
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22 Qed.

23

24 (** Composition is associative *)

25 Lemma compose_cm_assoc

26 (f : ContractMorphism C1 C2)

27 (g : ContractMorphism C2 C3)

28 (h : ContractMorphism C3 C4) :

29 compose_cm h (compose_cm g f) =

30 compose_cm (compose_cm h g) f.

31 Proof.

32 now apply eq_cm.

33 Qed.

34

35 End MorphismCompositionResults.

Listing B.8: Definition of a contract isomorphism.

1 Section IsomorphismDefinition.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 {C1 : Contract Setup1 Msg1 State1 Error1}

5 {C2 : Contract Setup2 Msg2 State2 Error2}.

6

7 Definition is_iso {A B : Type} (f : A -> B) (g : B -> A) : Prop :=

8 compose g f = @id A /\ compose f g = @id B.

9

10 Lemma is_iso_reflexive {A B : Type} (f : A -> B) (g : B -> A) :

11 is_iso f g -> is_iso g f.

12 Proof.

13 unfold is_iso.

14 intro H_is_iso.

15 now destruct H_is_iso.

16 Qed.

17

18 Definition is_iso_cm (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1) : Prop :=

19 compose_cm g f = id_cm C1 /\

20 compose_cm f g = id_cm C2.

21

22 Lemma iso_cm_components :

23 forall (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1),

24 is_iso (msg_morph C1 C2 f) (msg_morph C2 C1 g) /\

25 is_iso (setup_morph C1 C2 f) (setup_morph C2 C1 g) /\

26 is_iso (state_morph C1 C2 f) (state_morph C2 C1 g) /\

27 is_iso (error_morph C1 C2 f) (error_morph C2 C1 g)

28 <->

29 is_iso_cm f g.

30 Proof.
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31 intros f g.

32 unfold is_iso.

33 unfold iff.

34 split.

35 (* -> *)

36 - intro H_iso.

37 unfold is_iso_cm.

38 split; now apply eq_cm.

39 (* <- *)

40 - unfold is_iso_cm, compose_cm, id_cm.

41 now intro H_iso.

42 Qed.

43

44 End IsomorphismDefinition.

Listing B.9: Some results on contract isomorphisms.

1 Section IsomorphismsResults.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}.

4

5 (** An equality predicate on contracts *)

6 Definition contracts_isomorphic

7 (C1 : Contract Setup1 Msg1 State1 Error1)

8 (C2 : Contract Setup2 Msg2 State2 Error2) : Prop :=

9 exists (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1),

10 is_iso_cm f g.

11

12 Context ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

13 ‘{Serializable Setup4} ‘{Serializable Msg4} ‘{Serializable State4} ‘{Serializable

Error4}

14 { C1 : Contract Setup1 Msg1 State1 Error1 }

15 { C2 : Contract Setup2 Msg2 State2 Error2 }

16 { C3 : Contract Setup3 Msg3 State3 Error3 }

17 { C4 : Contract Setup4 Msg4 State4 Error4 }.

18

19 Lemma iso_cm_reflexive (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1) :

20 is_iso_cm f g ->

21 is_iso_cm g f.

22 Proof.

23 intro H_is_iso.

24 apply iso_cm_components in H_is_iso.

25 apply iso_cm_components.

26 destruct H_is_iso as [H_ind_iso H_is_iso].

27 do 2 (apply is_iso_reflexive in H_ind_iso;

28 split;
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29 try exact H_ind_iso;

30 clear H_ind_iso;

31 destruct H_is_iso as [H_ind_iso H_is_iso]).

32 split; now apply is_iso_reflexive.

33 Qed.

34

35 Lemma composition_iso_cm

36 (f1 : ContractMorphism C1 C2)

37 (g1 : ContractMorphism C2 C3)

38 (f2 : ContractMorphism C2 C1)

39 (g2 : ContractMorphism C3 C2) :

40 is_iso_cm f1 f2 ->

41 is_iso_cm g1 g2 ->

42 is_iso_cm (compose_cm g1 f1) (compose_cm f2 g2).

43 Proof.

44 unfold is_iso_cm.

45 intros iso_f iso_g.

46 destruct iso_f as [iso_f1 iso_f2].

47 destruct iso_g as [iso_g1 iso_g2].

48 split; rewrite compose_cm_assoc.

49 - rewrite <- (compose_cm_assoc g1 g2 f2).

50 rewrite iso_g1.

51 now rewrite (compose_id_cm_right f2).

52 - rewrite <- (compose_cm_assoc f2 f1 g1).

53 rewrite iso_f2.

54 now rewrite (compose_id_cm_right g1).

55 Qed.

56

57 End IsomorphismsResults.

Listing B.10: An isomorphism of contracts is both injective and surjective.

1 Theorem inj_surj_iso_cm (f : ContractMorphism C1 C2) :

2 (exists (g : ContractMorphism C2 C1), is_iso_cm f g) ->

3 is_inj_cm f /\ is_surj_cm f.

B.2 Morphism Induction

B.2.1 Contract Trace and Reachability

Listing B.11: The definition of contract trace and contract reachability.

1 Section ContractTrace.

2 Context { Setup Msg State Error : Type }

3 ‘{Serializable Msg} ‘{Serializable Setup} ‘{Serializable State} ‘{Serializable

Error}.
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4

5 (* Notions of contract state stepping forward *)

6 Record ContractStep (C : Contract Setup Msg State Error)

7 (prev_cstate : State) (next_cstate : State) :=

8 build_contract_step {

9 seq_chain : Chain ;

10 seq_ctx : ContractCallContext ;

11 seq_msg : option Msg ;

12 seq_new_acts : list ActionBody ;

13 (* we can call receive successfully *)

14 recv_some_step :

15 receive C seq_chain seq_ctx prev_cstate seq_msg = Ok (next_cstate, seq_new_acts) ;

16 }.

17

18 Definition ContractTrace (C : Contract Setup Msg State Error) :=

19 ChainedList State (ContractStep C).

20

21 Definition is_genesis_state (C : Contract Setup Msg State Error) (init_cstate : State) :

Prop :=

22 exists init_chain init_ctx init_setup,

23 init C init_chain init_ctx init_setup = Ok init_cstate.

24

25 Definition cstate_reachable (C : Contract Setup Msg State Error) (cstate : State) : Prop

:=

26 exists init_cstate,

27 (* init_cstate is a valid initial cstate *)

28 is_genesis_state C init_cstate /\

29 (* with a trace to cstate *)

30 inhabited (ContractTrace C init_cstate cstate).

31

32 Lemma inhab_trace_trans (C : Contract Setup Msg State Error) :

33 forall from mid to,

34 (ContractStep C mid to) ->

35 inhabited (ContractTrace C from mid) ->

36 inhabited (ContractTrace C from to).

37 Proof.

38 intros from mid to step.

39 apply inhabited_covariant.

40 intro mid_t.

41 apply (snoc mid_t step).

42 Qed.

43

44 End ContractTrace.

B.2.2 Right Morphism Induction
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Listing B.12: The theorem of left morphism induction.

1 (* f : C1 -> C2, inducting on C1 *)

2 Theorem left_cm_induction :

3 (* forall simple morphism and reachable bstate, *)

4 forall (f : ContractMorphism C1 C2) bstate caddr (trace : ChainTrace empty_state

bstate),

5 (* where C is at caddr with state cstate, *)

6 env_contracts bstate caddr = Some (C1 : WeakContract) ->

7 exists (cstate1 : State1),

8 contract_state bstate caddr = Some cstate1 /\

9 (* every reachable cstate1 of C1 corresponds to a contract-reachable cstate2 of C2 ...

*)

10 exists (cstate2 : State2),

11 (* 1. init_cstate2 is a valid initial cstate of C’ *)

12 cstate_reachable C2 cstate2 /\

13 (* 2. cstate and cstate’ are related by state_morph. *)

14 cstate2 = state_morph C1 C2 f cstate1.

B.2.3 Right Morphism Induction

Listing B.13: The theorem of right morphism induction.

1 (* f : C1 -> C2, inducting on C2 *)

2 Theorem right_cm_induction:

3 forall (from to : State1) (f : ContractMorphism C1 C2),

4 ContractTrace C1 from to ->

5 ContractTrace C2 (state_morph C1 C2 f from) (state_morph C1 C2 f to).

B.3 Reasoning with Morphisms: Specification and Proof

B.3.1 Specifying a Contract Upgrade with Morphisms

Listing B.14: The Uranium Finance example.

1 (** Example 5.3.1:

2 This example recalls the Uranium Finance hack of 2021 due to an incorrect upgrade:

3 A constant ‘k‘ was changed from 1_000 to 10_000 in all but one of its instances

4 in the contract.

5

6 This example illustrates how a contract upgrade can be *specified* using contract

7 morphisms, and uses that example.

8 We have formulated this example to be as general as possible.

9 *)

10
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11 Section UpgradeSpec.

12 Context { Base : ChainBase }.

13

14 (** Assume we have a calculate_trade function which is used to calculate trades in

15 a smart contract. It takes some input in N and returns the output of the trade, also

in N. *)

16 Context { calculate_trade : N -> N }.

17

18 (** Assume that we have some storage type which keeps track of balances via

19 a function ‘get_bal‘ *)

20 Context { storage : Type } ‘{ storage_ser : Serializable storage }

21 { get_bal : storage -> N }

22 (* Also assume some other relevant types of the contract. *)

23 { setup : Type } ‘{ setup_ser : Serializable setup }

24 { other_entrypoint : Type }.

25

26 (** We assume that entrypoint type includes a trade function, among other entrypoints. *)

27 Context { trade_data : Type } { trade_qty : trade_data -> N }.

28

29 Class Msg_Spec (T : Type) := {

30 trade : trade_data -> T ;

31 (* for any other entrypoint types *)

32 other : other_entrypoint -> option T ;

33 }.

34

35 Context { entrypoint : Type } ‘{ e_ser : Serializable entrypoint } ‘{ e_msg : Msg_Spec

entrypoint }.

36

37 (** And we assume anything in the entrypoint type is of the form ‘trade n‘ or (roughly) ‘

other o‘. *)

38 Definition msg_destruct : Prop :=

39 forall e,

40 (exists n, e = trade n) \/

41 (exists o, Some e = other o).

42 Context { e_msg_destruct : msg_destruct }.

43

44 (** Thus, the entrypoint type has this form:

45

46 Inductive entrypoint :=

47 | trade (qty : N)

48 | ... .

49 *)

50

51 (* final definitions of contract types *)

52 Definition error := N.

53 Definition result : Type := ResultMonad.result (storage * list ActionBody) error.

54

55 (*** Now suppose that we have a contract with those types ... *)

56 Context { C1 : Contract setup entrypoint storage error }.
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57

58 (** such that get_bal changes according to calculate_trade, meaning that: *)

59 Definition spec_trade : Prop :=

60 forall cstate chain ctx trade_data cstate’ acts,

61 (** for any successful call to the trade entrypoint of C1, *)

62 receive C1 chain ctx cstate (Some (trade trade_data)) = Ok(cstate’, acts) ->

63 (** the balance in storage updates as follows. *)

64 get_bal cstate’ =

65 get_bal cstate + calculate_trade (trade_qty trade_data).

66

67 Context { spec_trade : Prop }.

68

69 (** Now suppose that we have another calculate_trade function, this time which calculates

70 trades at one more digit of precision. *)

71 Definition round_down (n : N) := n / 10.

72

73 Context { calculate_trade_precise : N -> N }

74 (** (i.e. calculate_trade_precise rounds down to calculate_trade) *)

75 { calc_trade_coherence : forall n,

76 round_down (calculate_trade_precise n) =

77 calculate_trade (round_down n) }.

78

79 (** Suppose also that we have a round-down function on the storage type. *)

80

81 (** And that we have another contract, C2, ... *)

82 Context { C2 : Contract setup entrypoint storage error }.

83

84 (** but now trades are calculated in line with calculate_trade_precise. *)

85 Definition spec_trade_precise : Prop :=

86 forall cstate chain ctx trade_data cstate’ acts,

87 (** ... meaning that for a successful call to the trade entrypoint of C2, *)

88 receive C2 chain ctx cstate (Some (trade trade_data)) = Ok(cstate’, acts) ->

89 (** the balance held in storage goes up by calculate_trade_precise. *)

90 get_bal cstate’ =

91 get_bal cstate + calculate_trade_precise (trade_qty trade_data).

92

93 Context { spec_trade_precise : Prop }.

94

95

96 (** Now, to specify the *upgrade* from C1 to C2, we specify that there exist some morphism

97 f : C1 -> C2 which satisfies the following conditions: *)

98 Context { st_morph : storage -> storage }

99 { state_rounds_down : forall st, get_bal (st_morph st) = round_down (get_bal st)

}.

100

101 (** 1. f rounds trades down when it maps inputs *)

102 Definition f_recv_input_rounds_down (f : ContractMorphism C2 C1) : Prop :=

103 forall t’, exists t,

104 (msg_morph C2 C1 f) (trade t’) = trade t /\
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105 trade_qty t = round_down (trade_qty t’).

106

107 (** 2. aside from trade, f doesn’t touch the other entrypoints *)

108 Definition f_recv_input_other_equal (f : ContractMorphism C2 C1) : Prop :=

109 forall msg o,

110 (* for calls to all other entrypoints, *)

111 msg = other o ->

112 (* f is the identity *)

113 option_map (msg_morph C2 C1 f) (other o) = other o.

114

115 (** 3. f rounds down on the storage, but doesn’t touch anything else. *)

116 Definition f_state_morph (f : ContractMorphism C2 C1) : Prop :=

117 (state_morph C2 C1 f) = st_morph.

118

119 (** 4. f is the identity on error values *)

120 Definition f_recv_output_err (f : ContractMorphism C2 C1) : Prop :=

121 (error_morph C2 C1 f) = id.

122

123 (** 5. f is the identity on the setup *)

124 Definition f_init_id (f : ContractMorphism C2 C1) : Prop :=

125 (setup_morph C2 C1 f) = id.

126

127 (** Now we have a specification of the correct upgrade in terms of the existence of

128 a contract morphism. *)

129 Definition upgrade_spec (f : ContractMorphism C2 C1) : Prop :=

130 f_recv_input_rounds_down f /\

131 f_recv_input_other_equal f /\

132 f_state_morph f /\

133 f_recv_output_err f /\

134 f_init_id f.

135

136

137 (** The Upgrade Metaspecification.

138 To justify that upgrade_spec actually specifies a correct upgrade, we prove

139 the following result(s). *)

140

141 (*** Suppose there exists some f : C2 -> C1 satisfying upgrade_spec. *)

142 Context { f : ContractMorphism C2 C1 }

143 { is_upgrade_morph : upgrade_spec f }.

144

145 (* All states of C2 relate to equivalent states of C1 by rounding down *)

146 Theorem rounding_down_invariant bstate caddr (trace : ChainTrace empty_state bstate):

147 (* Forall reachable states with contract at caddr, *)

148 env_contracts bstate caddr = Some (C2 : WeakContract) ->

149 (* cstate is the state of the contract AND *)

150 exists (cstate’ cstate : storage),

151 contract_state bstate caddr = Some cstate’ /\

152 (* cstate is contract-reachable for C1 AND *)

153 cstate_reachable C1 cstate /\
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154 (* such that for cstate, the state of C1 in bstate,

155 the balance in cstate is rounded-down from the balance of cstate’ *)

156 get_bal cstate = round_down (get_bal cstate’).

157 Proof.

158 intros c_at_caddr.

159 pose proof (left_cm_induction f bstate caddr trace c_at_caddr)

160 as H_cm_ind.

161 destruct H_cm_ind as [cstate’ [contr_cstate’ [cstate [reach H_cm_ind]]]].

162 exists cstate’, cstate.

163 repeat split; auto.

164 cbn in H_cm_ind.

165 rewrite H_cm_ind.

166 destruct is_upgrade_morph as [_ [_ [f_state [_ _]]]].

167 now rewrite f_state.

168 Qed.

169

170 End UpgradeSpec.

B.3.2 Adding Features and Backwards Compatibility

Listing B.15: An example of backwards compatibility.

1 Section BackwardsCompatible.

2 Context { Base : ChainBase }.

3 Set Primitive Projections.

4 Set Nonrecursive Elimination Schemes.

5

6 (** The initial contract C *)

7 (* contract types definition *)

8 Inductive entrypoint1 := | incr (u : unit).

9 Definition storage := N.

10 Definition setup := N.

11 Definition error := N.

12 Definition result : Type := ResultMonad.result (storage * list ActionBody) error.

13

14 Section Serialization.

15 Global Instance entrypoint1_serializable : Serializable entrypoint1 :=

16 Derive Serializable entrypoint1_rect<incr>.

17 End Serialization.

18

19 (* init function definition *)

20 Definition init (_ : Chain) (_ : ContractCallContext) (n : setup) :

21 ResultMonad.result storage N :=

22 Ok (n).

23

24 (* receive function definition *)

25 Definition receive (_ : Chain) (_ : ContractCallContext) (n : storage)

26 (msg : option entrypoint1) : result :=

192



27 match msg with

28 | Some (incr _) => Ok (n + 1, [])

29 | None => Err 0

30 end.

31

32 (* construct the contract *)

33 Definition C1 : Contract setup entrypoint1 storage error :=

34 build_contract init receive.

35

36

37 (** The updated contract C’ *)

38 (* contract types definition *)

39 Inductive entrypoint2 := | incr’ (u : unit) | decr (u : unit).

40

41 Section Serialization.

42 Global Instance entrypoint2_serializable : Serializable entrypoint2 :=

43 Derive Serializable entrypoint2_rect<incr’,decr>.

44 End Serialization.

45

46 (* receive function definition *)

47 Definition receive’ (_ : Chain) (_ : ContractCallContext) (n : storage)

48 (msg : option entrypoint2) : result :=

49 match msg with

50 | Some (incr’ _) => Ok (n + 1, [])

51 | Some (decr _) => Ok (n - 1, [])

52 | None => Err 0

53 end.

54

55 (* construct the contract *)

56 Definition C2 : Contract setup entrypoint2 storage error :=

57 build_contract init receive’.

58

59

60 (** The contract morphism confirming backwards compatibility *)

61 Definition msg_morph (e : entrypoint1) : entrypoint2 :=

62 match e with | incr _ => incr’ tt end.

63 Definition setup_morph : setup -> setup := id.

64 Definition state_morph : storage -> storage := id.

65 Definition error_morph : error -> error := id.

66

67 (* the coherence results *)

68 Lemma init_coherence : forall c ctx s,

69 result_functor state_morph error_morph (init c ctx s) =

70 init c ctx (setup_morph s).

71 Proof. auto. Qed.

72

73 Lemma recv_coherence : forall c ctx st op_msg,

74 result_functor (fun ’(st, l) => (state_morph st, l)) error_morph (receive c ctx st

op_msg) =
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75 receive’ c ctx (state_morph st) (option_map msg_morph op_msg).

76 Proof.

77 intros.

78 unfold result_functor, msg_morph, state_morph, error_morph.

79 induction op_msg; auto.

80 now destruct a.

81 Qed.

82

83 (* construct the morphism *)

84 Definition f : ContractMorphism C1 C2 :=

85 build_contract_morphism C1 C2 setup_morph msg_morph state_morph error_morph

86 init_coherence recv_coherence.

87

88

89 (* This theorem shows a strong notion of backwards compatibility because there is

90 an embedding of the old contract into the new *)

91 Lemma embedding : is_inj_cm f.

92 Proof.

93 unfold is_inj_cm; unfold is_inj.

94 repeat split; intros.

95 - cbn in H.

96 now unfold setup_morph in H.

97 - now destruct a, a’, u, u0.

98 - cbn in H.

99 now unfold state_morph in H.

100 - cbn in H.

101 now unfold error_morph in H.

102 Qed.

103

104 (** Theorem:

105 All reachable states have a corresponding reachable state, related by the

106 *embedding* f. *)

107 Theorem injection_invariant bstate caddr (trace : ChainTrace empty_state bstate):

108 (* Forall reachable states with contract C1 at caddr, *)

109 env_contracts bstate caddr = Some (C1 : WeakContract) ->

110 (* forall reachable states of C1 cstate, there’s a corresponding reachable state

111 cstate’ of C2, related by the injection *)

112 exists (cstate’ cstate : storage),

113 contract_state bstate caddr = Some cstate /\

114 (* cstate’ is a contract-reachable state of C2 *)

115 cstate_reachable C2 cstate’ /\

116 (* .. equal to cstate *)

117 cstate’ = cstate.

118 Proof.

119 intros c_at_caddr.

120 pose proof (left_cm_induction f bstate caddr trace c_at_caddr)

121 as H_cm_ind.

122 destruct H_cm_ind as [cstate [cstate_c [cstate’ [reach H_cm_ind]]]].

123 now exists cstate’, cstate.
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124 Qed.

125

126 End BackwardsCompatible.

B.3.3 Transporting Hoare-Like Properties Over a Morphism

Listing B.16: Transporting a Hoare-like property of partial correctness over a contract morphism.

1 Section TransportHoare.

2 Context { Base : ChainBase }.

3

4 Context {setup storage error : Type}

5 ‘{setup_ser : Serializable setup} ‘{stor_ser : Serializable storage}

6 ‘{err_ser : Serializable error} ‘{storage_state : @State_Spec Base storage}

7 ‘{err_err : Error_Spec error}.

8

9 Set Primitive Projections.

10 Set Nonrecursive Elimination Schemes.

11

12 Inductive entrypoint :=

13 | Pool : pool_data -> entrypoint

14 | Unpool : unpool_data -> entrypoint

15 | Null : trade_data -> entrypoint.

16

17 Inductive entrypoint’ :=

18 | Pool’ : pool_data -> entrypoint’

19 | Unpool’ : unpool_data -> entrypoint’

20 | Trade’ : trade_data -> entrypoint’.

21

22 Context { other_entrypoint : Type }.

23

24 Definition e_pool (p : pool_data) : entrypoint := Pool p.

25 Definition e_unpool (u : unpool_data) : entrypoint := Unpool u.

26 Definition e_trade (t : trade_data) : entrypoint := Null t.

27 Definition e_other (o : other_entrypoint) : option entrypoint := None.

28 Global Instance entrypoint_msg_spec : Msg_Spec entrypoint := {

29 pool := e_pool ;

30 unpool := e_unpool ;

31 trade := e_trade ;

32 other := e_other ;

33 }.

34

35 Definition e’_pool (p : pool_data) : entrypoint’ := Pool’ p.

36 Definition e’_unpool (u : unpool_data) : entrypoint’ := Unpool’ u.

37 Definition e’_trade (t : trade_data) : entrypoint’ := Trade’ t.

38 Definition e’_other (o : other_entrypoint) : option entrypoint’ := None.

39 Global Instance entrypoint’_msg_spec : @Msg_Spec Base other_entrypoint entrypoint’ := {

40 pool := e’_pool ;
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41 unpool := e’_unpool ;

42 trade := e’_trade ;

43 other := e’_other ;

44 }.

45

46 Section Serialization.

47 Global Instance token_serializable : Serializable token :=

48 Derive Serializable token_rect<Build_token>.

49 Global Instance pool_data_serializable : Serializable pool_data :=

50 Derive Serializable pool_data_rect<Build_pool_data>.

51 Global Instance unpool_data_serializable : Serializable unpool_data :=

52 Derive Serializable unpool_data_rect<Build_unpool_data>.

53 Global Instance trade_data_serializable : Serializable trade_data :=

54 Derive Serializable trade_data_rect<Build_trade_data>.

55 Global Instance entrypoint_serializable : Serializable entrypoint :=

56 Derive Serializable entrypoint_rect<Pool,Unpool,Null>.

57 Global Instance entrypoint’_serializable : Serializable entrypoint’ :=

58 Derive Serializable entrypoint’_rect<Pool’,Unpool’,Trade’>.

59 End Serialization.

60

61 Context ‘{ set_setup : @Setup_Spec Base setup }

62 ‘{ stor_state : @State_Spec Base storage }.

63

64 Context

65 {C1 : Contract setup entrypoint storage error}

66 {C2 : Contract setup entrypoint’ storage error}.

67

68 Context { calc_rx_inv : forall (r_x : N) (q : N), N }

69 { calc_delta_y : forall (rate_in : N) (rate_out : N) (qty_trade : N) (k : N) (x :

N), N }

70 { calc_rx’ : forall (rate_in : N) (rate_out : N) (qty_trade : N) (k : N) (x : N),

N }.

71

72 Axiom is_sp : @is_structured_pool _ _ _ _ _ _ _ _ _ _ _ _ _ calc_rx_inv calc_delta_y

calc_rx’ C2.

73

74 Definition embed_entrypoint (e : entrypoint) : entrypoint’ :=

75 match e with

76 | Pool p => Pool’ p

77 | Unpool p => Unpool’ p

78 (* redirect the null entrypoint *)

79 | Null t => Trade’ t

80 end.

81

82 (* some assumptions about C and C’ *)

83 Definition init_coherence_prop : Prop := forall c ctx s,

84 result_functor id id

85 (init C1 c ctx s) =

86 init C2 c ctx (id s).
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87 Axiom init_coherence_pf : init_coherence_prop.

88

89 Definition recv_coherence_prop : Prop := forall c ctx st op_msg,

90 result_functor (fun ’(st, l) => (id st, l)) id

91 (receive C1 c ctx st op_msg) =

92 receive C2 c ctx (id st) (option_map embed_entrypoint op_msg).

93 Axiom recv_coherence_pf : recv_coherence_prop.

94

95

96 (* construct a contract morphism *)

97 Definition f : ContractMorphism C1 C2 := {|

98 setup_morph := id ;

99 msg_morph := embed_entrypoint ;

100 state_morph := id ;

101 error_morph := id ;

102 (* coherence *)

103 init_coherence := init_coherence_pf ;

104 recv_coherence := recv_coherence_pf ;

105 |}.

106

107

108 (* TODO get rid of this *)

109 Tactic Notation "is_sp_destruct" :=

110 match goal with

111 | is_sp : is_structured_pool _ |- _ =>

112 unfold is_structured_pool in is_sp;

113 destruct is_sp as [none_fails_pf is_sp’];

114 destruct is_sp’ as [msg_destruct_pf is_sp’];

115 (* isolate the pool entrypoint specification *)

116 destruct is_sp’ as [pool_entrypoint_check_pf is_sp’];

117 destruct is_sp’ as [pool_emits_txns_pf is_sp’];

118 destruct is_sp’ as [pool_increases_tokens_held_pf is_sp’];

119 destruct is_sp’ as [pool_rates_unchanged_pf is_sp’];

120 destruct is_sp’ as [pool_outstanding_pf is_sp’];

121 (* isolate the unpool entrypoint specification *)

122 destruct is_sp’ as [unpool_entrypoint_check_pf is_sp’];

123 destruct is_sp’ as [unpool_entrypoint_check_2_pf is_sp’];

124 destruct is_sp’ as [unpool_emits_txns_pf is_sp’];

125 destruct is_sp’ as [unpool_decreases_tokens_held_pf is_sp’];

126 destruct is_sp’ as [unpool_rates_unchanged_pf is_sp’];

127 destruct is_sp’ as [unpool_outstanding_pf is_sp’];

128 (* isolate the trade entrypoint specification *)

129 destruct is_sp’ as [trade_entrypoint_check_pf is_sp’];

130 destruct is_sp’ as [trade_entrypoint_check_2_pf is_sp’];

131 destruct is_sp’ as [trade_pricing_formula_pf is_sp’];

132 destruct is_sp’ as [trade_update_rates_pf is_sp’];

133 destruct is_sp’ as [trade_update_rates_formula_pf is_sp’];

134 destruct is_sp’ as [trade_emits_transfers_pf is_sp’];

135 destruct is_sp’ as [trade_tokens_held_update_pf is_sp’];
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136 destruct is_sp’ as [trade_outstanding_update_pf is_sp’];

137 destruct is_sp’ as [trade_pricing_pf is_sp’];

138 destruct is_sp’ as [trade_amounts_nonnegative_pf is_sp’];

139 (* isolate the specification of all other entrypoints *)

140 destruct is_sp’ as [other_rates_unchanged_pf is_sp’];

141 destruct is_sp’ as [other_balances_unchanged_pf is_sp’];

142 destruct is_sp’ as [other_outstanding_unchanged_pf is_sp’];

143 (* isolate the specification of calc_rx’ and calc_delta_y *)

144 destruct is_sp’ as [update_rate_stays_positive_pf is_sp’];

145 destruct is_sp’ as [rate_decrease_pf is_sp’];

146 destruct is_sp’ as [rates_balance_pf is_sp’];

147 destruct is_sp’ as [rates_balance_2_pf is_sp’];

148 destruct is_sp’ as [trade_slippage_pf is_sp’];

149 destruct is_sp’ as [trade_slippage_2_pf is_sp’];

150 destruct is_sp’ as [arbitrage_lt_pf is_sp’];

151 destruct is_sp’ as [arbitrage_gt_pf is_sp’];

152 (* isolate the initialization specification *)

153 destruct is_sp’ as [initialized_with_positive_rates_pf is_sp’];

154 destruct is_sp’ as [initialized_with_zero_balance_pf is_sp’];

155 destruct is_sp’ as [initialized_with_zero_outstanding_pf is_sp’];

156 destruct is_sp’ as [initialized_with_init_rates_pf initialized_with_pool_token_pf]

157 end.

158

159

160 (* Prove the following about C1 using C2 and f *)

161 Theorem pullback_unpool_emits_txns : unpool_emits_txns C1.

162 Proof.

163 pose proof is_sp as is_sp.

164 is_sp_destruct.

165 pose proof recv_coherence_pf as recv_eq.

166 unfold recv_coherence_prop in recv_eq.

167 unfold unpool_emits_txns.

168 intros * recv_some.

169 pose proof (unpool_emits_txns_pf cstate chain ctx msg_payload cstate’ acts )

170 as sp_spec_result.

171 pose proof (recv_eq chain ctx cstate (Some (unpool msg_payload))) as recv_eq.

172 unfold result_functor in recv_eq.

173 rewrite recv_some in recv_eq.

174 unfold embed_entrypoint in recv_eq.

175 cbn in recv_eq.

176 pose proof (eq_sym recv_eq) as recv_eq’.

177 now apply sp_spec_result in recv_eq’.

178 Qed.

179

180 End TransportHoare.
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B.4 A Mathematical Characterization of Contract Upgrades

Listing B.17: The definitions of the various contracts in the upgradeability decomposition.

1 Section ContractDefinitions.

2 (*** Contract types definition *)

3 (** Main contract C *)

4 Inductive entrypoint :=

5 | next (u : unit)

6 | upgrade_fun (s’ : N -> N).

7 Record storage := { n : N ; s : N -> N ; }.

8 Definition setup := storage.

9 Definition error := N.

10 Definition result : Type := ResultMonad.result (storage * list ActionBody) error.

11

12 (** Base’ contract C_b’ (to be C_b) *)

13 Inductive entrypoint_b’ :=

14 | upgrade_fun_b (s’ : N -> N).

15 Record storage_b := { s_b : N -> N ; }.

16 Definition setup_b := storage_b.

17 Definition error_b := N.

18 Definition result_b : Type := ResultMonad.result (storage_b * list ActionBody) error_b.

19

20 (** Version contracts C_f v, for v : storage_b *)

21 Inductive entrypoint_version := | next_f (u : unit).

22 Record storage_version := { n_f : N }.

23 Definition entrypoint_f : storage_b -> Type := fun v => entrypoint_version.

24 Definition storage_f : storage_b -> Type := fun v => storage_version.

25 Definition setup_f : storage_b -> Type := fun v => N.

26 Definition error_f : storage_b -> Type := fun v => N.

27 Definition result_f : storage_b -> Type :=

28 fun v => ResultMonad.result ((storage_f v) * list ActionBody) (error_f v).

29

30 Section Serialization.

31 Section SerializeFunctionType.

32 Context ‘{Serializable A} ‘{Serializable B}.

33

34 (* for simplicity, we assume that function types are serializable *)

35 Definition serialize_nn (f : A -> B) : SerializedValue. Admitted.

36 Definition deserialize_nn (val : SerializedValue) : option (A -> B). Admitted.

37 Lemma deserialize_serialize_nn (f : A -> B) :

38 deserialize_nn (serialize_nn f) = Some f.

39 Admitted.

40

41 Global Instance nn_serializable : Serializable (A -> B) :=

42 {| serialize := serialize_nn ;

43 deserialize := deserialize_nn ;

44 deserialize_serialize := deserialize_serialize_nn ; |}.

45 End SerializeFunctionType.
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46

47 (* assuming function types are serializable, ... *)

48 Global Instance storage_serializable : Serializable storage :=

49 Derive Serializable storage_rect<Build_storage>.

50 Global Instance entrypoint_serializable : Serializable entrypoint :=

51 Derive Serializable entrypoint_rect<next,upgrade_fun>.

52 Global Instance storage_b_serializable : Serializable storage_b :=

53 Derive Serializable storage_b_rect<Build_storage_b>.

54 Global Instance entrypoint_s_serializable : Serializable entrypoint_b’ :=

55 Derive Serializable entrypoint_b’_rect<upgrade_fun_b>.

56 Global Instance storage_f_serializable v : Serializable (storage_f v) :=

57 Derive Serializable storage_version_rect<Build_storage_version>.

58 Global Instance entrypoint_f_serializable v : Serializable (entrypoint_f v) :=

59 Derive Serializable entrypoint_version_rect<next_f>.

60 End Serialization.

61

62 (** Contract, init, and receive definitions *)

63

64 (** Main contract C *)

65 (* init *)

66 Definition init (_ : Chain)

67 (_ : ContractCallContext)

68 (init_state : setup)

69 : ResultMonad.result storage N :=

70 Ok (init_state).

71

72 (* receive *)

73 Definition receive (_ : Chain)

74 (_ : ContractCallContext)

75 (storage : storage)

76 (msg : option entrypoint)

77 : result :=

78 match msg with

79 | Some (next _) =>

80 let st := {| n := storage.(s) storage.(n) ; s := storage.(s) ; |} in

81 Ok (st, [])

82 | Some (upgrade_fun s’) =>

83 let st := {| n := storage.(n) ; s := s’ ; |} in

84 Ok (st, [])

85 | None => Err 0

86 end.

87

88 (* the contract C *)

89 Definition C : Contract setup entrypoint storage error :=

90 build_contract init receive.

91

92 (** Base’ Contract (to be the base contract) *)

93 (* init *)

94 Definition init_b’ (_ : Chain)
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95 (_ : ContractCallContext)

96 (init_state_b : setup_b)

97 : ResultMonad.result storage_b N :=

98 Ok (init_state_b).

99

100 (* receive *)

101 Definition receive_b’ (_ : Chain)

102 (_ : ContractCallContext)

103 (_ : storage_b)

104 (msg : option entrypoint_b’)

105 : result_b :=

106 match msg with

107 | Some (upgrade_fun_b s_new) =>

108 let st := {| s_b := s_new ; |} in

109 Ok (st, [])

110 | None => Err 0

111 end.

112

113 (* the contract C_b’ *)

114 Definition C_b’ : Contract setup_b entrypoint_b’ storage_b error_b :=

115 build_contract init_b’ receive_b’.

116

117 (** For the morphisms, we define the base contract *)

118 Definition C_b := pointed_contract C_b’.

119 Definition entrypoint_b := (entrypoint_b’ + unit)%type.

120

121 (** The family of version contracts C_f *)

122 (* init *)

123 Definition init_f (version : storage_b)

124 (_ : Chain)

125 (_ : ContractCallContext)

126 (n : setup_f version)

127 : ResultMonad.result (storage_f version) (error_f version) :=

128 let storage_f := {| n_f := n ; |} in

129 Ok (storage_f).

130

131 (* receive *)

132 Definition receive_f (version : storage_b)

133 (_ : Chain)

134 (_ : ContractCallContext)

135 (storage_f : storage_f version)

136 (msg : option (entrypoint_f version))

137 : result_f version :=

138 match msg with

139 | Some (next_f _) =>

140 let st := {| n_f := version.(s_b) storage_f.(n_f) ; |} in

141 Ok (st, [])

142 | None => Err 0

143 end.
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144

145 (* the contract C_f *)

146 Definition C_f (version : storage_b) : Contract (setup_f version) (entrypoint_f version) (

storage_f version) (error_f version) :=

147 build_contract (init_f version) (receive_f version).

148

149 End ContractDefinitions.

B.4.1 Isolating Mutable and Immutable Parts

Listing B.18: The quotient onto the base contract.

1 (** f_p : C ->> C_b *)

2 Section Quotient.

3 Definition zero_fn : N -> N := (fun (x : N) => 0).

4 Definition null_storage_b : storage_b := {| s_b := zero_fn |}.

5 Definition null_setup_b : setup_b := {| s_b := zero_fn |}.

6

7 (* component morphisms *)

8 Definition msg_morph_p (e : entrypoint) : entrypoint_b :=

9 match e with

10 | next _ => inr tt (* not upgrade functionality *)

11 | upgrade_fun s’ => inl (upgrade_fun_b s’) (* corresponds to an upgrade *)

12 end.

13 Definition state_morph_p : storage -> storage_b := (fun (x : storage) => {| s_b := x.(s) ;

|}).

14 Definition setup_morph_p : setup -> setup_b := (fun (x : setup) => {| s_b := x.(s) |}).

15 Definition error_morph_p : error -> error_b := (fun (x : error) => x).

16

17 (* the coherence results *)

18 Lemma init_coherence_p :

19 init_coherence_prop C C_b

20 setup_morph_p state_morph_p error_morph_p.

21 Proof. unfold init_coherence_prop. auto. Qed.

22

23 Lemma recv_coherence_p :

24 recv_coherence_prop C C_b

25 msg_morph_p state_morph_p error_morph_p.

26 Proof.

27 unfold recv_coherence_prop.

28 intros.

29 unfold result_functor.

30 cbn.

31 destruct op_msg; cbn.

32 - unfold msg_morph_p.

33 destruct e eqn:H_e.

34 + now destruct st.

35 + now unfold state_morph_p.
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36 - now unfold error_morph_p.

37 Qed.

38

39 (* construct the morphism *)

40 Definition f_p : ContractMorphism C C_b :=

41 build_contract_morphism C C_b

42 (* the morphisms *)

43 setup_morph_p msg_morph_p state_morph_p error_morph_p

44 (* coherence *)

45 init_coherence_p recv_coherence_p.

46

47 End Quotient.

Listing B.19: The family of contract embeddings.

1 (** f_i : forall v, C_f v -> C *)

2 Section Embedding.

3

4 Definition msg_morph_i (v : storage_b) (e : entrypoint_f v) : entrypoint :=

5 match e with

6 | next_f _ => next tt

7 end.

8 Definition setup_morph_i (v : storage_b) (st_f : setup_f v) : setup := {|

9 n := st_f ;

10 s := s_b v ; |}.

11 Definition state_morph_i (v : storage_b) (st_f : storage_f v) : storage :=

12 {| n := st_f.(n_f) ; s := s_b v ; |}.

13 Definition error_morph_i (v : storage_b) : error_f v -> error := id.

14

15 (* the coherence results *)

16 Lemma init_coherence_i (v : storage_b) :

17 init_coherence_prop (C_f v) C (setup_morph_i v) (state_morph_i v) (error_morph_i v).

18 Proof. unfold init_coherence_prop. auto. Qed.

19

20 Lemma recv_coherence_i (v : storage_b) :

21 recv_coherence_prop (C_f v) C (msg_morph_i v) (state_morph_i v) (error_morph_i v).

22 Proof.

23 unfold recv_coherence_prop.

24 intros.

25 destruct op_msg; auto.

26 now destruct e.

27 Qed.

28

29 (* construct the morphism *)

30 Definition fi_param (v : storage_b) : ContractMorphism (C_f v) C :=

31 build_contract_morphism (C_f v) C

32 (* the morphisms *)

33 (setup_morph_i v) (msg_morph_i v) (state_morph_i v) (error_morph_i v)

34 (* coherence results *)
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35 (init_coherence_i v) (recv_coherence_i v).

36

37 End Embedding.

B.4.2 Decomposing Upgradeability

Listing B.20: A proof of the upgradeability decomposition.

1 (** Here we prove the core result that the family of versioned contracts and the

2 base contract given above provide an upgradeability decomposition of our contract C.

*)

3 Section UpgradeabilityDecomposition.

4 Definition extract_version (m : entrypoint_b’) : storage_b :=

5 match m with | upgrade_fun_b s_b => {| s_b := s_b |} end.

6 Definition new_version_state old_v msg (st : storage_f old_v) : storage_f (extract_version

msg) := st.

7

8 Theorem upgradeability_decomposition :

9 upgradeability_decomposition fi_param f_p extract_version new_version_state.

10 Proof.

11 unfold upgradeability_decomposition.

12 repeat split.

13 (* msg_required *)

14 - unfold ContractMorphisms.msg_required.

15 intros.

16 now exists 0.

17 (* init_versioned *)

18 - unfold init_versioned.

19 intros ? ? ? s init_ok.

20 destruct init_state as [n_i s_i].

21 unfold is_versioned.

22 now exists {| s_b := s_i |}, {| n_f := n_i |}.

23 (* msg_decomposable *)

24 (* -> *)

25 - simpl.

26 intro H_null.

27 unfold msg_morph_p in H_null.

28 destruct m; try inversion H_null.

29 destruct u.

30 now exists (next_f tt).

31 (* <- *)

32 - simpl.

33 intro H_preim.

34 unfold msg_morph_i in H_preim.

35 destruct H_preim as [m’ H_preim].

36 destruct m’.

37 unfold msg_morph_p.

38 now destruct m; try inversion H_preim.
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39 (* states categorized *)

40 (* -> *)

41 - simpl.

42 intro H_preim.

43 destruct H_preim as [st_f H_preim].

44 destruct st_f as [nf].

45 unfold state_morph_i in H_preim.

46 simpl in H_preim.

47 destruct st as [n s].

48 now inversion H_preim.

49 (* <- *)

50 - simpl.

51 unfold state_morph_p, state_morph_i.

52 destruct c_version as [sb], st as [n s].

53 cbn.

54 intro H.

55 inversion H.

56 now exists {| n_f := n |}.

57 (* version transition *)

58 - unfold version_transition.

59 simpl.

60 unfold msg_morph_p, state_morph_i.

61 intros * H_cstate_preim ? ? ? ? ? ? recv_some is_upgrade_msg.

62 destruct msg; try inversion is_upgrade_msg.

63 inversion recv_some.

64 f_equal.

65 unfold new_version_state.

66 now rewrite H_cstate_preim.

67 Qed.

68

69 End UpgradeabilityDecomposition.

Listing B.21: Some results provable due to the decomposition.

1 Section Decomposition.

2

3 (** Theorem: all reachable contract states are versioned according to this indexing *)

4 Theorem all_states_versioned :

5 forall bstate caddr (trace : ChainTrace empty_state bstate),

6 (* where C is at caddr with state cstate, *)

7 env_contracts bstate caddr = Some (C : WeakContract) ->

8 exists (cstate : storage),

9 contract_state bstate caddr = Some cstate /\

10 (* then every contract state cstate is versioned *)

11 is_versioned fi_param cstate.

12 Proof.

13 intros * ? c_at_caddr.

14 pose proof (versioned_invariant fi_param f_p extract_version new_version_state bstate

caddr trace c_at_caddr).
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15 destruct H as [cstate [cstate_st versioned]].

16 exists cstate.

17 split; auto.

18 apply (versioned upgradeability_decomposition).

19 Qed.

20

21 (** Theorem: Versioning moves along as we’ve described it. *)

22 Theorem upgrade_decomposed :

23 (* Forall versioned contract states (incl. all reachable states), *)

24 forall cstate c_version cstate_f,

25 cstate = state_morph (C_f c_version) C (fi_param c_version) cstate_f ->

26 (* And forall calls to the versioned contract *)

27 forall chain ctx m new_state new_acts,

28 receive chain ctx cstate (Some m) = Ok (new_state, new_acts) ->

29 (* the contract state either stays within this version *)

30 (exists cstate_f’, new_state = state_morph (C_f c_version) C (fi_param c_version)

cstate_f’) \/

31 (* or it moves onto a new version as we’ve described it. *)

32 (exists c_version’ cstate_f’,

33 new_state = state_morph (C_f c_version’) C (fi_param c_version’) cstate_f’).

34 Proof.

35 intros * cstate_preim * recv_some.

36 apply (upgradeability_decomposed fi_param f_p extract_version new_version_state cstate

c_version

37 cstate_f upgradeability_decomposition cstate_preim chain ctx m new_state new_acts

recv_some).

38 Qed.

39

40 End Decomposition.

B.4.3 Upgradeable Contracts are Fiber Bundles: A Digression

Listing B.22: The fiber bundle of our upgradeability decomposition admits a section.

1 Section FiberBundle.

2

3 (* A section of p is a morphism C_b’ -> C such that C_b’ -> C -> C_b = C_b’ -> C_b *)

4 Definition setup_morph_s n : setup_b -> setup := (fun (x : setup_b) => {| n := n ; s := x

.(s_b) |}).

5 Definition msg_morph_s (e : entrypoint_b’) : entrypoint :=

6 match e with | upgrade_fun_b s’ => upgrade_fun s’ end.

7 Definition state_morph_s n : storage_b -> storage :=

8 (fun (x : storage_b) => {| n := n ; s := x.(s_b) ; |}).

9 Definition error_morph_s : error_b -> error := (fun (x : error_b) => x).

10

11 Definition fp_rinv (n : N) : ContractMorphism C_b’ C.

12 Proof.

13 apply (build_contract_morphism C_b’ C
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14 (setup_morph_s n) msg_morph_s (state_morph_s n) error_morph_s).

15 - intros.

16 simpl.

17 now unfold state_morph_s, setup_morph_s, init.

18 - intros.

19 simpl.

20 unfold result_functor, state_morph_s, error_morph_s, receive.

21 simpl.

22 destruct op_msg; cbn; auto.

23 now destruct e.

24 Defined.

25

26 Theorem p_rinv_section (n : N) :

27 compose_cm f_p (fp_rinv n) = pointed_include C_b’.

28 Proof.

29 unfold compose_cm, pointed_include.

30 apply eq_cm; cbn.

31 - now unfold setup_morph_p, setup_morph_s.

32 - unfold msg_morph_p, msg_morph_s.

33 apply functional_extensionality.

34 intro e.

35 now destruct e.

36 - now unfold state_morph_p, state_morph_s.

37 - now unfold error_morph_p, error_morph_s.

38 Qed.

39

40 End FiberBundle.
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Appendix C

Proofs and Definitions of Chapter 6

C.1 Bisimulations of Contracts

C.1.1 Contract Trace Morphisms

Listing C.1: The formal definition of a contract trace morphism.

1 Section ContractTraceMorphism.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}.

4

5 Record ContractTraceMorphism

6 (C1 : Contract Setup1 Msg1 State1 Error1)

7 (C2 : Contract Setup2 Msg2 State2 Error2) :=

8 build_ct_morph {

9 (* a function of state types *)

10 ct_state_morph : State1 -> State2 ;

11 (* init state C1 -> init state C2 *)

12 genesis_fixpoint : forall init_cstate,

13 is_genesis_cstate C1 init_cstate ->

14 is_genesis_cstate C2 (ct_state_morph init_cstate) ;

15 (* coherence *)

16 cstep_morph : forall state1 state2,

17 ContractStep C1 state1 state2 ->

18 ContractStep C2 (ct_state_morph state1) (ct_state_morph state2) ;

19 }.

20

21 End ContractTraceMorphism.
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Listing C.2: The identity contract trace morphism.

1 Section IdentityCTMorphism.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}.

3

4 Definition id_genesis_fixpoint (C : Contract Setup1 Msg1 State1 Error1)

5 init_cstate

6 (gen_C : is_genesis_cstate C init_cstate) :

7 is_genesis_cstate C (id init_cstate) :=

8 gen_C.

9

10 Definition id_cstep_morph (C : Contract Setup1 Msg1 State1 Error1)

11 state1 state2

12 (step : ContractStep C state1 state2) :

13 ContractStep C (id state1) (id state2) :=

14 step.

15

16 Definition id_ctm (C : Contract Setup1 Msg1 State1 Error1) : ContractTraceMorphism C C :=

{|

17 ct_state_morph := id ;

18 genesis_fixpoint := id_genesis_fixpoint C ;

19 cstep_morph := id_cstep_morph C ;

20 |}.

21

22 End IdentityCTMorphism.

Listing C.3: Equality of contract trace morphisms.

1 Section EqualityOfCTMorphisms.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}.

4

5 Lemma eq_ctm_dep

6 (C1 : Contract Setup1 Msg1 State1 Error1)

7 (C2 : Contract Setup2 Msg2 State2 Error2)

8 (ct_st_m : State1 -> State2)

9 (gen_fix1 gen_fix2 : forall init_cstate,

10 is_genesis_cstate C1 init_cstate ->

11 is_genesis_cstate C2 (ct_st_m init_cstate))

12 (cstep_m1 cstep_m2 : forall state1 state2,

13 ContractStep C1 state1 state2 ->

14 ContractStep C2 (ct_st_m state1) (ct_st_m state2)) :

15 cstep_m1 = cstep_m2 ->

16 {| ct_state_morph := ct_st_m ;

17 genesis_fixpoint := gen_fix1 ;

18 cstep_morph := cstep_m1 ; |}

19 =
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20 {| ct_state_morph := ct_st_m ;

21 genesis_fixpoint := gen_fix2 ;

22 cstep_morph := cstep_m2 ; |}.

23 Proof.

24 intro cstep_equiv.

25 subst.

26 f_equal.

27 apply proof_irrelevance.

28 Qed.

29

30 End EqualityOfCTMorphisms.

Listing C.4: Composition of contract trace morphisms.

1 Section CTMorphismComposition.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

5 {C1 : Contract Setup1 Msg1 State1 Error1}

6 {C2 : Contract Setup2 Msg2 State2 Error2}

7 {C3 : Contract Setup3 Msg3 State3 Error3}.

8

9 Definition genesis_compose (m2 : ContractTraceMorphism C2 C3) (m1 : ContractTraceMorphism

C1 C2)

10 init_cstate (gen_C1 : is_genesis_cstate C1 init_cstate) :

11 is_genesis_cstate C3 (compose (ct_state_morph C2 C3 m2) (ct_state_morph C1 C2 m1)

init_cstate) :=

12 match m2 with

13 | build_ct_morph _ _ _ gen_fix2 step2 =>

14 match m1 with

15 | build_ct_morph _ _ _ gen_fix1 step1 =>

16 gen_fix2 _ (gen_fix1 _ gen_C1)

17 end

18 end.

19

20 Definition cstep_compose (m2 : ContractTraceMorphism C2 C3) (m1 : ContractTraceMorphism C1

C2)

21 state1 state2 (step : ContractStep C1 state1 state2) :

22 ContractStep C3

23 (compose (ct_state_morph C2 C3 m2) (ct_state_morph C1 C2 m1) state1)

24 (compose (ct_state_morph C2 C3 m2) (ct_state_morph C1 C2 m1) state2) :=

25 match m2, m1 with

26 | build_ct_morph _ _ _ _ step2, build_ct_morph _ _ _ _ step1 =>

27 step2 _ _ (step1 _ _ step)

28 end.

29
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30 Definition compose_ctm

31 (m2 : ContractTraceMorphism C2 C3)

32 (m1 : ContractTraceMorphism C1 C2) : ContractTraceMorphism C1 C3 :=

33 {|

34 ct_state_morph := compose (ct_state_morph _ _ m2) (ct_state_morph _ _ m1) ;

35 genesis_fixpoint := genesis_compose m2 m1 ;

36 cstep_morph := cstep_compose m2 m1 ;

37 |}.

38

39 End CTMorphismComposition.

Listing C.5: Some results about contract trace morphism composition, including that composition is

associative, and that left and right composition with the identity is trivial.

1 Section CTMorphismCompositionResults.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

5 ‘{Serializable Setup4} ‘{Serializable Msg4} ‘{Serializable State4} ‘{Serializable

Error4}

6 { C1 : Contract Setup1 Msg1 State1 Error1 }

7 { C2 : Contract Setup2 Msg2 State2 Error2 }

8 { C3 : Contract Setup3 Msg3 State3 Error3 }

9 { C4 : Contract Setup4 Msg4 State4 Error4 }.

10

11 (* Composition is associative *)

12 Lemma compose_ctm_assoc

13 (f : ContractTraceMorphism C1 C2)

14 (g : ContractTraceMorphism C2 C3)

15 (h : ContractTraceMorphism C3 C4) :

16 compose_ctm h (compose_ctm g f) =

17 compose_ctm (compose_ctm h g) f.

18 Proof. now destruct f, g, h. Qed.

19

20 (* Composition with the identity is trivial *)

21 Lemma compose_id_ctm_left (f : ContractTraceMorphism C1 C2) :

22 compose_ctm (id_ctm C2) f = f.

23 Proof. now destruct f. Qed.

24

25 Lemma compose_id_ctm_right (f : ContractTraceMorphism C1 C2) :

26 compose_ctm f (id_ctm C1) = f.

27 Proof. now destruct f. Qed.

28

29 End CTMorphismCompositionResults.
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C.1.2 The Lifting Theorem

Listing C.6: The lifting theorem.

1 Section LiftingTheorem.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 {C1 : Contract Setup1 Msg1 State1 Error1}

5 {C2 : Contract Setup2 Msg2 State2 Error2}.

6

7 Definition lift_genesis (f : ContractMorphism C1 C2) :

8 forall init_cstate,

9 is_genesis_cstate C1 init_cstate ->

10 is_genesis_cstate C2 (state_morph C1 C2 f init_cstate).

11 Proof.

12 destruct f as [setup_morph msg_morph state_morph error_morph i_coh r_coh].

13 cbn.

14 intros * genesis.

15 unfold is_genesis_cstate in *.

16 destruct genesis as [c [ctx [s init_coh]]].

17 exists c, ctx, (setup_morph s).

18 rewrite <- i_coh.

19 unfold result_functor.

20 now destruct (init C1 c ctx s).

21 Defined.

22

23 Definition lift_cstep_morph (f : ContractMorphism C1 C2) :

24 forall state1 state2,

25 ContractStep C1 state1 state2 ->

26 ContractStep C2

27 (state_morph C1 C2 f state1)

28 (state_morph C1 C2 f state2).

29 Proof.

30 destruct f as [setup_morph msg_morph state_morph error_morph i_coh r_coh].

31 cbn.

32 intros * step.

33 destruct step as [seq_chain seq_ctx seq_msg seq_new_acts recv_step].

34 apply (build_contract_step C2 (state_morph state1) (state_morph state2) seq_chain

seq_ctx

35 (option_map msg_morph seq_msg) seq_new_acts).

36 rewrite <- r_coh.

37 unfold result_functor.

38 destruct (receive C1 seq_chain seq_ctx state1 seq_msg);

39 try destruct t;

40 now inversion recv_step.

41 Defined.

42

43 (** Lifting Theorem *)
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44 Definition cm_lift_ctm (f : ContractMorphism C1 C2) : ContractTraceMorphism C1 C2 :=

45 build_ct_morph _ _ (state_morph _ _ f) (lift_genesis f) (lift_cstep_morph f).

46

47 End LiftingTheorem.

Listing C.7: Some results on the lifting theorem, including that the identity lifts to the identity, and

compositions to compositions.

1 Section LiftingTheoremResults.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

5 {C1 : Contract Setup1 Msg1 State1 Error1}

6 {C2 : Contract Setup2 Msg2 State2 Error2}

7 {C3 : Contract Setup3 Msg3 State3 Error3}.

8

9 (* id lifts to id *)

10 Theorem cm_lift_ctm_id :

11 cm_lift_ctm (id_cm C1) = id_ctm C1.

12 Proof.

13 unfold cm_lift_ctm, id_ctm.

14 simpl.

15 apply (eq_ctm_dep C1 C1 (@id State1)).

16 apply functional_extensionality_dep.

17 intro st1.

18 apply functional_extensionality_dep.

19 intro st1’.

20 apply functional_extensionality_dep.

21 intro cstep.

22 destruct cstep as [s_chn s_ctx s_msg s_nacts s_recv].

23 unfold id_cstep_morph.

24 cbn.

25 unfold option_map.

26 destruct s_msg;

27 cbn;

28 f_equal;

29 apply proof_irrelevance.

30 Qed.

31

32 (* compositions lift to compositions *)

33 Theorem cm_lift_ctm_compose

34 (g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) :

35 cm_lift_ctm (compose_cm g f) =

36 compose_ctm (cm_lift_ctm g) (cm_lift_ctm f).

37 Proof.

38 unfold cm_lift_ctm, compose_ctm.
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39 cbn.

40 apply (eq_ctm_dep C1 C3 (compose (state_morph C2 C3 g) (state_morph C1 C2 f))).

41 apply functional_extensionality_dep.

42 intro st1.

43 apply functional_extensionality_dep.

44 intro st1’.

45 apply functional_extensionality_dep.

46 intro cstep.

47 destruct cstep as [s_chn s_ctx s_msg s_nacts s_recv].

48 unfold lift_cstep_morph.

49 destruct g as [smorph_g msgmorph_g stmorph_g errmorph_g initcoh_g recvcoh_g].

50 destruct f as [smorph_f msgmorph_f stmorph_f errmorph_f initcoh_f recvcoh_f].

51 cbn.

52 destruct s_msg;

53 cbn;

54 f_equal;

55 apply proof_irrelevance.

56 Qed.

57

58 End LiftingTheoremResults.

C.1.3 Contract Bisimulations

Listing C.8: The definition and results about contract bisimulations.

1 Section ContractBisimulation.

2

3 Section ContractTraceIsomorphism.

4 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

5 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

6 {C1 : Contract Setup1 Msg1 State1 Error1}

7 {C2 : Contract Setup2 Msg2 State2 Error2}.

8

9 (* a bisimulation of contracts, or an isomorphism of contract traces *)

10 Definition is_iso_ctm

11 (m1 : ContractTraceMorphism C1 C2) (m2 : ContractTraceMorphism C2 C1) :=

12 compose_ctm m2 m1 = id_ctm C1 /\

13 compose_ctm m1 m2 = id_ctm C2.

14

15 (* contract isomorphism -> contract trace isomorphism *)

16 Corollary ciso_to_ctiso (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C1) :

17 is_iso_cm f g -> is_iso_ctm (cm_lift_ctm f) (cm_lift_ctm g).

18 Proof.

19 unfold is_iso_cm, is_iso_ctm.

20 intro iso_cm.

21 destruct iso_cm as [iso_cm_l iso_cm_r].
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22 rewrite <- (cm_lift_ctm_compose g f).

23 rewrite <- (cm_lift_ctm_compose f g).

24 rewrite iso_cm_l.

25 rewrite iso_cm_r.

26 now repeat rewrite cm_lift_ctm_id.

27 Qed.

28

29 End ContractTraceIsomorphism.

30

31 (* the definition of bisimilar contracts *)

32 Definition contracts_bisimilar

33 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

34 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

35 (C1 : Contract Setup1 Msg1 State1 Error1)

36 (C2 : Contract Setup2 Msg2 State2 Error2) :=

37 exists (f : ContractTraceMorphism C1 C2) (g : ContractTraceMorphism C2 C1),

38 is_iso_ctm f g.

39

40 (* bisimilarity is an equivalence relation *)

41 Lemma bisim_refl

42 ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable Error}

43 (C : Contract Setup Msg State Error) :

44 contracts_bisimilar C C.

45 Proof.

46 exists (id_ctm C), (id_ctm C).

47 unfold is_iso_ctm.

48 split; apply compose_id_ctm_left.

49 Qed.

50

51 Lemma bisim_sym

52 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

53 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

54 (C1 : Contract Setup1 Msg1 State1 Error1)

55 (C2 : Contract Setup2 Msg2 State2 Error2) :

56 contracts_bisimilar C1 C2 ->

57 contracts_bisimilar C2 C1.

58 Proof.

59 intro c_bisim.

60 unfold contracts_bisimilar in *.

61 destruct c_bisim as [f [f’ iso_f_g]].

62 exists f’, f.

63 unfold is_iso_ctm in *.

64 destruct iso_f_g as [f_id1 f_id2].

65 split.

66 - apply f_id2.
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67 - apply f_id1.

68 Qed.

69

70 Lemma bisim_trans

71 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

72 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

73 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

74 {C1 : Contract Setup1 Msg1 State1 Error1}

75 {C2 : Contract Setup2 Msg2 State2 Error2}

76 {C3 : Contract Setup3 Msg3 State3 Error3} :

77 contracts_bisimilar C1 C2 /\ contracts_bisimilar C2 C3 ->

78 contracts_bisimilar C1 C3.

79 Proof.

80 intros c_bisims.

81 destruct c_bisims as [[f [f’ iso_f]] [g [g’ iso_g]]].

82 unfold contracts_bisimilar in *.

83 exists (compose_ctm g f), (compose_ctm f’ g’).

84 destruct iso_g as [g_id1 g_id2].

85 destruct iso_f as [f_id1 f_id2].

86 unfold is_iso_ctm.

87 split.

88 - rewrite <- compose_ctm_assoc.

89 replace (compose_ctm g’ (compose_ctm g f)) with (compose_ctm (compose_ctm g’ g) f)

.

90 2:{ now rewrite <- compose_ctm_assoc. }

91 rewrite g_id1.

92 rewrite compose_id_ctm_left.

93 apply f_id1.

94 - rewrite <- compose_ctm_assoc.

95 replace (compose_ctm f (compose_ctm f’ g’)) with (compose_ctm (compose_ctm f f’) g

’).

96 2:{ now rewrite <- compose_ctm_assoc. }

97 rewrite f_id2.

98 rewrite compose_id_ctm_left.

99 apply g_id2.

100 Qed.

101

102 (* an isomorphism of contracts lifts to a bisimulation *)

103 Theorem c_iso_to_bisim

104 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

105 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

106 {C1 : Contract Setup1 Msg1 State1 Error1}

107 {C2 : Contract Setup2 Msg2 State2 Error2} :

108 contracts_isomorphic C1 C2 -> contracts_bisimilar C1 C2.
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109 Proof.

110 intro c_iso.

111 destruct c_iso as [f [g [is_iso_1 is_iso_2]]].

112 unfold contracts_bisimilar.

113 exists (cm_lift_ctm f), (cm_lift_ctm g).

114 unfold is_iso_ctm.

115 split;

116 rewrite <- cm_lift_ctm_compose;

117 try rewrite is_iso_1;

118 try rewrite is_iso_2;

119 now rewrite cm_lift_ctm_id.

120 Qed.

121

122 End ContractBisimulation.

C.1.4 Discussion: Propositional Indistinguishability

Listing C.9: An example illustrating the degree to which bisimilar contracts are propositionally indistin-

guishable.

1 (* Bisimilar contracts have very similar invariants, depending on the state

2 isomorphism.

3

4 In this example, we show that, for bisimilar contracts C1 and C2, if there

5 is a state invariant of C1 which is preserved by the state isomorphism of

6 the bisimulation, then that same state invariant holds for C2.

7 *)

8

9 Section PropositionalIndistinguishability.

10 Context {Base : ChainBase}.

11

12 Context

13 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

14 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

15 (* Consider contracts C1 and C2 ... *)

16 {C1 : Contract Setup1 Msg1 State1 Error1}

17 {C2 : Contract Setup2 Msg2 State2 Error2}.

18

19 (* such that C1 and C2 are bisimilar. *)

20 Context {m1 : ContractTraceMorphism C1 C2} {m2 : ContractTraceMorphism C2 C1}

21 {C1_C2_bisim : is_iso_ctm m1 m2}.

22

23 (* Assume that both State1 and State2 have a constant in storage, given by a function

24 const_in_stor *)

25 Context { const_in_stor_C1 : State1 -> nat } { const_in_stor_C2 : State2 -> nat }
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26 (* and assume that this constant is invariant under the ct_state isomorphism *)

27 { const_pres : forall st,

28 const_in_stor_C2 (ct_state_morph C1 C2 m1 st) = const_in_stor_C1 st }.

29

30 (* Assume that an invariant holds for C1 ... *)

31 Axiom invariant_C1_init : forall c ctx s cstate,

32 init C1 c ctx s = Ok cstate ->

33 (const_in_stor_C1 cstate > 0)%nat.

34

35 Axiom invariant_C1_recv : forall c ctx cstate op_msg new_st nacts,

36 receive C1 c ctx cstate op_msg = Ok (new_st, nacts) ->

37 (const_in_stor_C1 new_st > 0)%nat.

38

39 (* Because the invariant is preserved under the state isomorphism of the bisimulation,

40 we can prove that the same invariant of C2 *)

41 Theorem invariant_C2 bstate caddr (trace : ChainTrace empty_state bstate):

42 (* Forall reachable states with contract at caddr, *)

43 env_contracts bstate caddr = Some (C2 : WeakContract) ->

44 (* such that cstate is the state of the contract, *)

45 exists (cstate : State2),

46 contract_state bstate caddr = Some cstate /\

47 (* the constant in storage is > 0 *)

48 (const_in_stor_C2 cstate > 0)%nat.

49 Proof.

50 intros.

51 contract_induction; auto; intros.

52 (* deployment *)

53 - assert (is_genesis_cstate C2 result)

54 as is_gen2.

55 { unfold is_genesis_cstate.

56 now exists chain, ctx, setup. }

57 pose proof (genesis_fixpoint C2 C1 m2 result is_gen2)

58 as is_gen1.

59 destruct is_gen1 as [c2 [ctx2 [s2 init_ok2]]].

60 pose proof (invariant_C1_init _ _ _ _ init_ok2)

61 as invar_C1.

62 rewrite <- const_pres in invar_C1.

63 assert ((ct_state_morph C1 C2 m1 (ct_state_morph C2 C1 m2 result)) = result)

64 as state_id.

65 { unfold is_iso_ctm in C1_C2_bisim.

66 destruct C1_C2_bisim as [iso_l iso_r].

67 unfold compose_ctm, id_ctm in *.

68 replace (ct_state_morph C1 C2 m1 (ct_state_morph C2 C1 m2 result))

69 with (Basics.compose (ct_state_morph C1 C2 m1) (ct_state_morph C2 C1 m2)

result).

70 2:{ auto. }

71 inversion iso_r.

72 now rewrite H8. }

73 now rewrite state_id in invar_C1.
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74 (* nonrecursive call *)

75 - assert (ContractStep C2 prev_state new_state)

76 as step_C2.

77 { apply (build_contract_step C2 prev_state new_state chain ctx msg

78 new_acts receive_some). }

79 pose proof (cstep_morph C2 C1 m2 prev_state new_state step_C2)

80 as step_morph.

81 destruct step_morph.

82 pose proof (invariant_C1_recv seq_chain seq_ctx

83 (ct_state_morph C2 C1 m2 prev_state) seq_msg

84 (ct_state_morph C2 C1 m2 new_state) seq_new_acts recv_ok_step)

85 as invar_C2.

86 rewrite <- const_pres in invar_C2.

87 replace (ct_state_morph C1 C2 m1 (ct_state_morph C2 C1 m2 new_state))

88 with (Basics.compose (ct_state_morph C1 C2 m1) (ct_state_morph C2 C1 m2) new_state

)

89 in invar_C2.

90 2:{ auto. }

91 assert (Basics.compose (ct_state_morph C1 C2 m1) (ct_state_morph C2 C1 m2) = id)

92 as state_id.

93 { unfold is_iso_ctm in C1_C2_bisim.

94 destruct C1_C2_bisim as [iso_l iso_r].

95 unfold compose_ctm, id_ctm in *.

96 now inversion iso_r. }

97 now rewrite state_id in invar_C2.

98 (* recursive call *)

99 - assert (ContractStep C2 prev_state new_state)

100 as step_C2.

101 { apply (build_contract_step C2 prev_state new_state chain ctx msg

102 new_acts receive_some). }

103 pose proof (cstep_morph C2 C1 m2 prev_state new_state step_C2)

104 as step_morph.

105 destruct step_morph.

106 pose proof (invariant_C1_recv seq_chain seq_ctx

107 (ct_state_morph C2 C1 m2 prev_state) seq_msg

108 (ct_state_morph C2 C1 m2 new_state) seq_new_acts recv_ok_step)

109 as invar_C2.

110 rewrite <- const_pres in invar_C2.

111 replace (ct_state_morph C1 C2 m1 (ct_state_morph C2 C1 m2 new_state))

112 with (Basics.compose (ct_state_morph C1 C2 m1) (ct_state_morph C2 C1 m2) new_state

)

113 in invar_C2.

114 2:{ auto. }

115 assert (Basics.compose (ct_state_morph C1 C2 m1) (ct_state_morph C2 C1 m2) = id)

116 as state_id.

117 { unfold is_iso_ctm in C1_C2_bisim.

118 destruct C1_C2_bisim as [iso_l iso_r].

119 unfold compose_ctm, id_ctm in *.

120 now inversion iso_r. }
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121 now rewrite state_id in invar_C2.

122 (* prove facts *)

123 - solve_facts.

124 Qed.

125

126 End PropositionalIndistinguishability.

C.2 Contract Systems as Bigraphs

C.2.1 Bigraphs

C.2.2 The Place Graph

Listing C.10: The formalization of an n-ary tree, or n-tree.

1 Section ntree.

2

3 Inductive ntree (T : Type) : Type :=

4 | Node : T -> list (ntree T) -> ntree T.

5

6 Definition singleton_ntree {T} (t : T) := Node T t nil.

7

8 (* fold/traversal for ntrees *)

9 Fixpoint ntree_fold_left {A T}

10 (f : A -> T -> A)

11 (sys : ntree T)

12 (a0 : A) : A :=

13 match sys with

14 | Node _ t list_child_trees =>

15 List.fold_left

16 (fun (a0’ : A) (sys’ : ntree T) =>

17 ntree_fold_left f sys’ a0’)

18 list_child_trees

19 (f a0 t)

20 end.

21

22 (* ntree map : the functoriality of ntrees *)

23 Fixpoint ntree_map {T T’} (f : T -> T’) (tree : ntree T) : ntree T’ :=

24 match tree with

25 | Node _ v children =>

26 Node T’ (f v) (List.map (fun child => ntree_map f child) children)

27 end.

28

29 Fixpoint replace_at_index {T : Type} (n : nat) (new_elem : T) (l : list T) : list T :=

30 match l, n with

31 | nil, _ => nil
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32 | _ :: tl, 0 => new_elem :: tl

33 | hd :: tl, S n’ => hd :: replace_at_index n’ new_elem tl

34 end.

35

36 Fixpoint add_tree_at_leaf {T} (orig append : ntree T) (leaf_index : list nat) : ntree T :=

37 match orig, leaf_index with

38 | Node _ v children, nil => Node T v (append :: children)

39 | Node _ v children, i :: is =>

40 match List.nth_error children i with

41 | Some child => Node T v (replace_at_index i (add_tree_at_leaf child append is)

children)

42 | None => orig

43 end

44 end.

45

46 End ntree.

Listing C.11: The formal definition of a contract’s place graph.

1 Definition ContractPlaceGraph

2 (Setup Msg State Error : Type)

3 ‘{sys_set : Serializable Setup}

4 ‘{sys_msg : Serializable Msg}

5 ‘{sys_st : Serializable State}

6 ‘{sys_err : Serializable Error} :=

7 ntree (Contract Setup Msg State Error).

Listing C.12: The formal definition of a contract place graph’s interface.

1 Section SystemInterface.

2 Context ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable

Error}.

3

4 (* system init : just initialize the root, since all contract init behaves identically *)

5 Definition sys_init

6 (sys : ContractPlaceGraph Setup Msg State Error)

7 (c : Chain)

8 (ctx : ContractCallContext)

9 (s : Setup) : result State Error :=

10 match sys with

11 | Node _ root_contract _ =>

12 init root_contract c ctx s

13 end.

14

15 (* system receive: take the message and state and run through the entire system.

16 since systems are iteratively built so that a message not intended for a given

contract

17 returns the identity, this targets the contract in question and leaves the rest

untouched. *)
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18 Definition sys_receive

19 (sys : ContractPlaceGraph Setup Msg State Error)

20 (c : Chain)

21 (ctx : ContractCallContext)

22 (st : State)

23 (op_msg : option Msg) : result (State * list ActionBody) Error :=

24 ntree_fold_left

25 (fun (recv_propogate : result (State * list ActionBody) Error)

26 (contr : Contract Setup Msg State Error) =>

27 match recv_propogate with

28 | Ok (st0, lacts0) =>

29 match receive contr c ctx st0 op_msg with

30 | Ok (st1, lacts1) => Ok (st1, lacts0 ++ lacts1)

31 | Err e => Err e

32 end

33 | Err e => Err e

34 end)

35 sys

36 (Ok (st, nil)).

37

38 (* thes two functions give us a contract *)

39 Definition sys_contract (sys : ContractPlaceGraph Setup Msg State Error) :=

40 build_contract (sys_init sys) (sys_receive sys).

41

42 End SystemInterface.

C.2.2.1 Iteratively Building a Contract System

Listing C.13: Some definitions and functions for iteratively constructing the place graph of a contract

system.

1 Section IterativePlaceGraphBuild.

2 (* the definition of a singleton system *)

3 Definition singleton_place_graph

4 ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable Error}

5 (C : Contract Setup Msg State Error)

6 : ContractPlaceGraph Setup Msg State Error := singleton_ntree C.

7

8 Section IterativeSum.

9 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

10 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}.

11

12 (* an iterative add to contract systems s.t. type goals are satisfied *)

13

14 (* accepts messages on the left *)

15 Definition c_sum_l
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16 (C1 : Contract Setup1 Msg1 State1 Error1)

17 (C2 : Contract Setup2 Msg2 State2 Error2) :

18 Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2).

19 Proof.

20 destruct C1 as [init1 recv1].

21 destruct C2 as [init2 recv2].

22 apply build_contract.

23 (* each setup must succeed, providing the new system state *)

24 - apply (fun c ctx s’ =>

25 let ’(s1, s2) := s’ in

26 match init1 c ctx s1, init2 c ctx s2 with

27 | Ok st1, Ok st2 => Ok (st1, st2)

28 | Err e, _ => Err (inl e) (* the left error is first *)

29 | _, Err e => Err (inr e) (* followed by the right *)

30 end).

31 - apply (fun c ctx st’ op_msg =>

32 let ’(st1, st2) := st’ in

33 match op_msg with

34 | Some msg =>

35 match msg with

36 (* the message was intended for this contract,

37 so we attempt to udpate the state *)

38 | inl msg =>

39 match recv1 c ctx st1 (Some msg) with

40 | Ok (new_st1, nacts) => Ok ((new_st1, st2), nacts)

41 | Err e => Err (inl e)

42 end

43 (* the message was not intended for this contract, so we do nothing *)

44 | inr msg => Ok (st’, nil)

45 end

46 | None => (* if there is no message, we call the contract with None *)

47 match recv1 c ctx st1 None with

48 | Ok (new_st1, nacts) => Ok ((new_st1, st2), nacts)

49 | Err e => Err (inl e)

50 end

51 end).

52 Defined.

53

54 (* same as before, but accepts messages on the right now *)

55 Definition c_sum_r

56 (C1 : Contract Setup1 Msg1 State1 Error1)

57 (C2 : Contract Setup2 Msg2 State2 Error2) :

58 Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2).

59 Proof.

60 destruct C1 as [init1 recv1].

61 destruct C2 as [init2 recv2].

62 apply build_contract.

63 (* each setup must succeed, providing the new system state *)

64 - apply (fun c ctx s’ =>
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65 let ’(s1, s2) := s’ in

66 match init1 c ctx s1, init2 c ctx s2 with

67 | Ok st1, Ok st2 => Ok (st1, st2)

68 | Err e, _ => Err (inl e) (* the left error is first *)

69 | _, Err e => Err (inr e) (* followed by the right *)

70 end).

71 - apply (fun c ctx st’ op_msg =>

72 let ’(st1, st2) := st’ in

73 match op_msg with

74 | Some msg =>

75 match msg with

76 (* the message was not intended for this contract, so we do nothing *)

77 | inl msg => Ok (st’, nil)

78 (* the message was intended for this contract,

79 so we attempt to udpate the state *)

80 | inr msg =>

81 match recv2 c ctx st2 (Some msg) with

82 | Ok (new_st2, nacts) => Ok ((st1, new_st2), nacts)

83 | Err e => Err (inr e)

84 end

85 end

86 | None => (* if there is no message, we call the contract with None *)

87 match recv2 c ctx st2 None with

88 | Ok (new_st2, nacts) => Ok ((st1, new_st2), nacts)

89 | Err e => Err (inr e)

90 end

91 end).

92 Defined.

93

94 End IterativeSum.

95

96

97 Section IterativeChild.

98 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

99 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}.

100

101 (* add a contract as a child to a system(/nest contracts) *)

102 Definition sys_add_child_r

103 (sys : ContractPlaceGraph Setup1 Msg1 State1 Error1)

104 (C : Contract Setup2 Msg2 State2 Error2) :

105 ContractPlaceGraph (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2)

:=

106 let T := (Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2)

) in

107 match sys with

108 | Node _ root_contract _ =>

109 match (ntree_map (fun C1 => c_sum_l C1 C) sys) with
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110 | Node _ root_contract’ children =>

111 Node T root_contract’ (children ++ [Node T (c_sum_r root_contract C) nil])

112 end

113 end.

114

115 (* nest C1 C2 indicates that C2 is nested within C1 *)

116 Definition nest

117 (C1 : Contract Setup1 Msg1 State1 Error1)

118 (C2 : Contract Setup2 Msg2 State2 Error2) :

119 ContractPlaceGraph (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2)

:=

120 let T := (Contract (Setup1 * Setup2) (Msg1 + Msg2) (State1 * State2) (Error1 + Error2)

) in

121 Node T (c_sum_l C1 C2) [Node T (c_sum_r C1 C2) nil].

122

123 End IterativeChild.

124

125 End IterativePlaceGraphBuild.

C.2.2.2 System Contracts, Morphisms, and Isomorphisms

Listing C.14: The formal definition of a system morphism, or a morphism of system place graphs.

1 Record SystemMorphism

2 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

3 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2) :=

4 build_system_morphism {

5 (* the components of a morphism *)

6 sys_setup_morph : Setup1 -> Setup2 ;

7 sys_msg_morph : Msg1 -> Msg2 ;

8 sys_state_morph : State1 -> State2 ;

9 sys_error_morph : Error1 -> Error2 ;

10 (* coherence conditions *)

11 sys_init_coherence : forall c ctx s,

12 result_functor sys_state_morph sys_error_morph

13 (sys_init sys1 c ctx s) =

14 sys_init sys2 c ctx (sys_setup_morph s) ;

15 sys_recv_coherence : forall c ctx st op_msg,

16 result_functor (fun ’(st, l) => (sys_state_morph st, l)) sys_error_morph

17 (sys_receive sys1 c ctx st op_msg) =

18 sys_receive sys2 c ctx (sys_state_morph st) (option_map sys_msg_morph op_msg)

;

19 }.

Listing C.15: A system place graph can be defined as a contract, and system morphisms are in one-to-one

correspondence with contract morphisms of that contract.

1 Definition sys_contract (sys : ContractPlaceGraph Setup Msg State Error) :=
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2 build_contract (sys_init sys) (sys_receive sys).

3

4 (* a system morphism is in one-to-one correspondence with a morphism of contracts,

5 when we consider a system as its own contract *)

6 Definition cm_to_sysm

7 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

8 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2)

9 (f : ContractMorphism (sys_contract sys1) (sys_contract sys2)) : SystemMorphism sys1

sys2.

10 Proof.

11 destruct f.

12 apply (build_system_morphism sys1 sys2 setup_morph msg_morph state_morph error_morph

13 init_coherence recv_coherence).

14 Defined.

15

16 Definition sysm_to_cm

17 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

18 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2)

19 (f : SystemMorphism sys1 sys2) : ContractMorphism (sys_contract sys1) (sys_contract

sys2).

20 Proof.

21 destruct f as [sys_setup_morph sys_msg_morph sys_state_morph sys_error_morph

sys_init_coh sys_recv_coh].

22 apply (build_contract_morphism (sys_contract sys1) (sys_contract sys2)

23 sys_setup_morph sys_msg_morph sys_state_morph sys_error_morph

24 sys_init_coh sys_recv_coh).

25 Defined.

26

27 Lemma cm_sysm_one_to_one

28 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

29 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2) :

30 compose (cm_to_sysm sys1 sys2) (sysm_to_cm sys1 sys2) = id /\

31 compose (sysm_to_cm sys1 sys2) (cm_to_sysm sys1 sys2) = id.

32 Proof.

33 split;

34 unfold sysm_to_cm, cm_to_sysm;

35 apply functional_extensionality;

36 intro;

37 now destruct x.

38 Qed.

C.3 The Link Graph

C.3.1 System Steps and System Trace
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Listing C.16: The formal definition of a single system step, and chained single steps.

1 Section LinkGraph.

2 Context ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable

Error}.

3

4 (* system state stepping forward *)

5 Record SingleSystemStep (sys : ContractPlaceGraph Setup Msg State Error)

6 (prev_sys_state next_sys_state : State) :=

7 build_sys_single_step {

8 sys_step_chain : Chain ;

9 sys_step_ctx : ContractCallContext ;

10 sys_step_msg : option Msg ;

11 sys_step_nacts : list ActionBody ;

12 (* we can call receive successfully *)

13 sys_recv_ok_step :

14 sys_receive sys sys_step_chain sys_step_ctx prev_sys_state sys_step_msg =

15 Ok (next_sys_state, sys_step_nacts) ;

16 }.

17

18 Definition ChainedSingleSteps (sys : ContractPlaceGraph Setup Msg State Error) :=

19 ChainedList State (SingleSystemStep sys).

20

21 End LinkGraph.

Listing C.17: The formal definition of a contract system consists of a definition of its place and link

graphs. The link graph must have semantics in chained single steps.

1 Record ContractSystem

2 (Setup Msg State Error : Type)

3 ‘{sys_set : Serializable Setup}

4 ‘{sys_msg : Serializable Msg}

5 ‘{sys_st : Serializable State}

6 ‘{sys_err : Serializable Error} :=

7 build_contract_system {

8 (* the place and link graphs *)

9 sys_place : ContractPlaceGraph Setup Msg State Error ;

10 sys_link : State -> State -> Type ;

11 (* the link graph has semantics in ChanedSingleSteps *)

12 sys_link_semantics : forall st1 st2,

13 sys_link st1 st2 ->

14 ChainedSingleSteps sys_place st1 st2 ;

15 }.

Listing C.18: The formal definition of the steps of a contract system.

1 Definition SystemStep (sys : ContractSystem Setup Msg State Error) :=

2 sys_link’ sys.
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Listing C.19: The formal definition of the a contract system’s trace.

1 Definition SystemTrace (sys : ContractSystem Setup Msg State Error) :=

2 ChainedList State (SystemStep sys).

C.4 Bisimulations of Contract Systems

C.4.1 System Trace Morphisms and System Bisimulations

Listing C.20: The formal definition of a system trace morphism.

1 Record SystemTraceMorphism

2 (sys1 : ContractSystem Setup1 Msg1 State1 Error1)

3 (sys2 : ContractSystem Setup2 Msg2 State2 Error2) :=

4 build_st_morph {

5 (* a function *)

6 st_state_morph : State1 -> State2 ;

7 (* init state sys1 -> init state sys2 *)

8 sys_genesis_fixpoint : forall init_sys_state,

9 is_genesis_sys_state sys1 init_sys_state ->

10 is_genesis_sys_state sys2 (st_state_morph init_sys_state) ;

11 (* step morphism *)

12 sys_step_morph : forall sys_state1 sys_state2,

13 SystemStep sys1 sys_state1 sys_state2 ->

14 SystemStep sys2 (st_state_morph sys_state1) (st_state_morph sys_state2) ;

15 }.

Listing C.21: The identity system trace morphism.

1 Section IdentitySTMorphism.

2 Context ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable

Error}.

3

4 Definition id_sys_genesis_fixpoint (sys : ContractSystem Setup Msg State Error)

5 init_sys_state

6 (gen_sys : is_genesis_sys_state sys init_sys_state) :

7 is_genesis_sys_state sys (id init_sys_state) :=

8 gen_sys.

9

10 Definition id_sys_step_morph (sys : ContractSystem Setup Msg State Error)

11 sys_state1 sys_state2 (step : SystemStep sys sys_state1 sys_state2) :

12 SystemStep sys (id sys_state1) (id sys_state2) :=

13 step.

14

15 Definition id_stm (sys : ContractSystem Setup Msg State Error) : SystemTraceMorphism sys

sys :=

16 {|
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17 st_state_morph := id ;

18 sys_genesis_fixpoint := id_sys_genesis_fixpoint sys ;

19 sys_step_morph := id_sys_step_morph sys ;

20 |}.

21

22 End IdentitySTMorphism.

Listing C.22: A lemma to assert equality of system trace morphisms.

1 Section EqualityOfSTMorphisms.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}.

4

5 Lemma eq_stm_dep

6 (sys1 : ContractSystem Setup1 Msg1 State1 Error1)

7 (sys2 : ContractSystem Setup2 Msg2 State2 Error2)

8 (st_st_m : State1 -> State2)

9 sys_gen_fix1 sys_gen_fix2

10 (sys_step_m1 sys_step_m2 : forall sys_state1 sys_state2,

11 SystemStep sys1 sys_state1 sys_state2 ->

12 SystemStep sys2 (st_st_m sys_state1) (st_st_m sys_state2)) :

13 sys_step_m1 = sys_step_m2 ->

14 {| st_state_morph := st_st_m ;

15 sys_genesis_fixpoint := sys_gen_fix1 ;

16 sys_step_morph := sys_step_m1 ; |}

17 =

18 {| st_state_morph := st_st_m ;

19 sys_genesis_fixpoint := sys_gen_fix2 ;

20 sys_step_morph := sys_step_m2 ; |}.

21 Proof.

22 intro cstep_equiv.

23 subst.

24 f_equal.

25 apply proof_irrelevance.

26 Qed.

27

28 End EqualityOfSTMorphisms.

Listing C.23: The formal definition of system trace morphism composition.

1 Section STMorphismComposition.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}
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5 {sys1 : ContractSystem Setup1 Msg1 State1 Error1}

6 {sys2 : ContractSystem Setup2 Msg2 State2 Error2}

7 {sys3 : ContractSystem Setup3 Msg3 State3 Error3}.

8

9 Definition sys_genesis_compose

10 (m2 : SystemTraceMorphism sys2 sys3) (m1 : SystemTraceMorphism sys1 sys2)

11 init_sys_state (gen_s1 : is_genesis_sys_state sys1 init_sys_state) :

12 is_genesis_sys_state sys3

13 (compose (st_state_morph sys2 sys3 m2) (st_state_morph sys1 sys2 m1)

init_sys_state) :=

14 match m2, m1 with

15 | build_st_morph _ _ _ gen_fix2 step2, build_st_morph _ _ _ gen_fix1 step1 =>

16 gen_fix2 _ (gen_fix1 _ gen_s1)

17 end.

18

19 Definition sys_step_compose

20 (m2 : SystemTraceMorphism sys2 sys3) (m1 : SystemTraceMorphism sys1 sys2)

21 sys_state1 sys_state2

22 (step : SystemStep sys1 sys_state1 sys_state2) :

23 SystemStep sys3

24 (compose (st_state_morph sys2 sys3 m2) (st_state_morph sys1 sys2 m1) sys_state1)

25 (compose (st_state_morph sys2 sys3 m2) (st_state_morph sys1 sys2 m1) sys_state2)

:=

26 match m2, m1 with

27 | build_st_morph _ _ _ _ step2, build_st_morph _ _ _ _ step1 =>

28 step2 _ _ (step1 _ _ step)

29 end.

30

31 Definition compose_stm

32 (m2 : SystemTraceMorphism sys2 sys3)

33 (m1 : SystemTraceMorphism sys1 sys2) : SystemTraceMorphism sys1 sys3 :=

34 {|

35 st_state_morph := compose (st_state_morph _ _ m2) (st_state_morph _ _ m1) ;

36 sys_genesis_fixpoint := sys_genesis_compose m2 m1 ;

37 sys_step_morph := sys_step_compose m2 m1 ;

38 |}.

39

40 End STMorphismComposition.

Listing C.24: Some results about system trace morphism composition.

1 Section STMorphismComposition.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

5 {sys1 : ContractSystem Setup1 Msg1 State1 Error1}
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6 {sys2 : ContractSystem Setup2 Msg2 State2 Error2}

7 {sys3 : ContractSystem Setup3 Msg3 State3 Error3}.

8

9 Definition sys_genesis_compose

10 (m2 : SystemTraceMorphism sys2 sys3) (m1 : SystemTraceMorphism sys1 sys2)

11 init_sys_state (gen_s1 : is_genesis_sys_state sys1 init_sys_state) :

12 is_genesis_sys_state sys3

13 (compose (st_state_morph sys2 sys3 m2) (st_state_morph sys1 sys2 m1)

init_sys_state) :=

14 match m2, m1 with

15 | build_st_morph _ _ _ gen_fix2 step2, build_st_morph _ _ _ gen_fix1 step1 =>

16 gen_fix2 _ (gen_fix1 _ gen_s1)

17 end.

18

19 Definition sys_step_compose

20 (m2 : SystemTraceMorphism sys2 sys3) (m1 : SystemTraceMorphism sys1 sys2)

21 sys_state1 sys_state2

22 (step : SystemStep sys1 sys_state1 sys_state2) :

23 SystemStep sys3

24 (compose (st_state_morph sys2 sys3 m2) (st_state_morph sys1 sys2 m1) sys_state1)

25 (compose (st_state_morph sys2 sys3 m2) (st_state_morph sys1 sys2 m1) sys_state2)

:=

26 match m2, m1 with

27 | build_st_morph _ _ _ _ step2, build_st_morph _ _ _ _ step1 =>

28 step2 _ _ (step1 _ _ step)

29 end.

30

31 Definition compose_stm

32 (m2 : SystemTraceMorphism sys2 sys3)

33 (m1 : SystemTraceMorphism sys1 sys2) : SystemTraceMorphism sys1 sys3 :=

34 {|

35 st_state_morph := compose (st_state_morph _ _ m2) (st_state_morph _ _ m1) ;

36 sys_genesis_fixpoint := sys_genesis_compose m2 m1 ;

37 sys_step_morph := sys_step_compose m2 m1 ;

38 |}.

39

40 End STMorphismComposition.

Listing C.25: A system trace isomorphism.

1 Definition is_iso_stm

2 (m1 : SystemTraceMorphism sys1 sys2) (m2 : SystemTraceMorphism sys2 sys1) :=

3 compose_stm m2 m1 = id_stm sys1 /\

4 compose_stm m1 m2 = id_stm sys2.

Listing C.26: The formal definition of a bisimulation of contract systems.

1 Definition systems_bisimilar

2 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}
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3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 (sys1 : ContractSystem Setup1 Msg1 State1 Error1)

5 (sys2 : ContractSystem Setup2 Msg2 State2 Error2) :=

6 exists (f : SystemTraceMorphism sys1 sys2) (g : SystemTraceMorphism sys2 sys1),

7 is_iso_stm f g.

C.4.2 Lifting Theorems for Contract Systems

Listing C.27: The discrete link graph construction on a place graph.

1 Section DiscreteLinkSys.

2 Context ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable

Error}.

3

4 Definition discrete_link (sys : ContractPlaceGraph Setup Msg State Error) st1 st2 :=

5 SingleSystemStep sys st1 st2.

6

7 Definition discrete_link_semantics (sys : ContractPlaceGraph Setup Msg State Error)

8 st1 st2 (step : discrete_link sys st1 st2) :

9 ChainedSingleSteps sys st1 st2 :=

10 (snoc clnil step).

11

12 Definition discrete_sys (sys : ContractPlaceGraph Setup Msg State Error) := {|

13 sys_place := sys ;

14 sys_link := discrete_link sys ;

15 sys_link_semantics := discrete_link_semantics sys ;

16 |}.

17

18 End DiscreteLinkSys.

Listing C.28: The lifting theorem for system trace morphisms.

1 Definition sm_lift_stm (f : SystemMorphism sys1 sys2) :

2 SystemTraceMorphism (discrete_sys sys1) (discrete_sys sys2) :=

3 build_st_morph _ _ (sys_state_morph _ _ f) (lift_sys_genesis f) (lift_sys_step_morph f

).

Listing C.29: Some results on the lifting theorem for contract trace morphisms.

1 Section LiftingTheoremResults.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}
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5 {sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1}

6 {sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2}

7 {sys3 : ContractPlaceGraph Setup3 Msg3 State3 Error3}.

8

9 (* id lifts to id *)

10 Lemma sm_lift_stm_id :

11 sm_lift_stm (id_sm sys1) = id_stm (discrete_sys sys1).

12 Proof.

13 apply (eq_stm_dep (discrete_sys sys1) (discrete_sys sys1) (@id State1)).

14 apply functional_extensionality_dep.

15 intro st1.

16 apply functional_extensionality_dep.

17 intro st1’.

18 apply functional_extensionality_dep.

19 intro sys_step.

20 destruct sys_step.

21 unfold lift_sys_step_morph, id_sm, discrete_sys, option_map, id_sys_step_morph.

22 cbn.

23 do 2 f_equal; auto.

24 destruct sys_step_msg;

25 apply f_equal;

26 apply proof_irrelevance.

27 Qed.

28

29 (* compositions lift to compositions *)

30 Lemma sm_lift_stm_compose

31 (g : SystemMorphism sys2 sys3) (f : SystemMorphism sys1 sys2) :

32 sm_lift_stm (compose_sm g f) =

33 compose_stm (sm_lift_stm g) (sm_lift_stm f).

34 Proof.

35 apply (eq_stm_dep (discrete_sys sys1) (discrete_sys sys3)

36 (compose (sys_state_morph sys2 sys3 g) (sys_state_morph sys1 sys2 f))).

37 apply functional_extensionality_dep.

38 intro st1.

39 apply functional_extensionality_dep.

40 intro st1’.

41 apply functional_extensionality_dep.

42 intro sys_step.

43 induction sys_step.

44 destruct g as [smorph_g msgmorph_g stmorph_g errmorph_g initcoh_g recvcoh_g].

45 destruct f as [smorph_f msgmorph_f stmorph_f errmorph_f initcoh_f recvcoh_f].

46 unfold lift_sys_step_morph, sys_step_compose, compose_sm.

47 destruct sys_step_msg;

48 cbn;

49 f_equal;

50 apply proof_irrelevance.

51 Qed.

52

53 End LiftingTheoremResults.

234



Listing C.30: Isomorphic contract systems are bisimilar under the discrete link graph.

1 Corollary sys_iso_to_bisim

2 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 (sys1 : ContractPlaceGraph Setup1 Msg1 State1 Error1)

5 (sys2 : ContractPlaceGraph Setup2 Msg2 State2 Error2) :

6 systems_isomorphic sys1 sys2 -> systems_bisimilar (discrete_sys sys1) (discrete_sys

sys2).

7 Proof.

8 intro sys_iso.

9 destruct sys_iso as [f [g [is_iso_1 is_iso_2]]].

10 unfold systems_bisimilar.

11 exists (sm_lift_stm f), (sm_lift_stm g).

12 unfold is_iso_stm.

13 split;

14 rewrite <- sm_lift_stm_compose;

15 try rewrite is_iso_1;

16 try rewrite is_iso_2;

17 now rewrite sm_lift_stm_id.

18 Qed.

Listing C.31: Contract morphisms lift to system morphisms, and system morphisms lift to system trace

morphisms.

1 Section LiftCMtoSM.

2 Context ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

3 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

4 {C1 : Contract Setup1 Msg1 State1 Error1}

5 {C2 : Contract Setup2 Msg2 State2 Error2}.

6

7 Definition lift_cm_to_sm (f : ContractMorphism C1 C2) :

8 SystemMorphism (singleton_place_graph C1) (singleton_place_graph C2).

9 Proof.

10 destruct f as [setup_morph msg_morph state_morph error_morph init_coherence

recv_coherence].

11 apply (build_system_morphism (singleton_place_graph C1) (singleton_place_graph C2)

12 setup_morph msg_morph state_morph error_morph);

13 unfold singleton_place_graph, singleton_ntree, sys_init, sys_receive, ntree_fold_left

in *.

14 - apply init_coherence.

15 - intros.

16 rewrite <- recv_coherence.

17 cbn.
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18 now destruct (receive C1 c ctx st op_msg).

19 Defined.

20

21 Definition lift_ctm_to_stm (f : ContractTraceMorphism C1 C2) :

22 SystemTraceMorphism

23 (discrete_sys (singleton_place_graph C1))

24 (discrete_sys (singleton_place_graph C2)).

25 Proof.

26 destruct f as [ct_st_morph gen_fixp cstep_morph].

27 apply (build_st_morph

28 (discrete_sys (singleton_place_graph C1)) (discrete_sys (singleton_place_graph C2)

) ct_st_morph);

29 unfold singleton_place_graph, singleton_ntree, sys_init, sys_receive, ntree_fold_left

in *.

30 - apply gen_fixp.

31 - intros * step.

32 assert (ContractStep C2 (ct_st_morph sys_state1) (ct_st_morph sys_state2)

33 -> SingleSystemStep (Node (Contract Setup2 Msg2 State2 Error2) C2 [])

34 (ct_st_morph sys_state1) (ct_st_morph sys_state2))

35 as H_step.

36 { intro cstep.

37 destruct cstep as [c ctx msg nacts recv_ok].

38 apply (build_sys_single_step _ _ _ c ctx msg nacts).

39 unfold sys_receive.

40 cbn.

41 destruct (receive C2 c ctx (ct_st_morph sys_state1) msg); auto.

42 now destruct t. }

43 apply H_step, cstep_morph.

44 clear H_step.

45 destruct step as [c ctx msg nacts recv_ok].

46 apply (build_contract_step C1 sys_state1 sys_state2 c ctx msg nacts).

47 unfold sys_receive in recv_ok.

48 cbn in *.

49 destruct (receive C1 c ctx sys_state1 msg); auto.

50 destruct t.

51 now inversion recv_ok.

52 Defined.

53

54 End LiftCMtoSM.

Listing C.32: The identity contract morphism lifts to the identity system morphism, and compositions

lift to compositions. Thus isomorphic contracts lift to isomorphic singleton contract systems under the

discrete link graph.

1 (* id lifts to id *)

2 Lemma lift_id_cm_to_id_sm

3 ‘{Serializable Setup} ‘{Serializable Msg} ‘{Serializable State} ‘{Serializable Error}

4 {C : Contract Setup Msg State Error} :

5 lift_cm_to_sm (id_cm C) = id_sm (singleton_place_graph C).
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6 Proof.

7 unfold lift_cm_to_sm, id_cm, id_sm, singleton_place_graph.

8 cbn.

9 f_equal;

10 apply proof_irrelevance.

11 Qed.

12

13 (* compositions lift to compositions *)

14 Lemma lift_cm_to_sm_comp

15 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

16 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

17 ‘{Serializable Setup3} ‘{Serializable Msg3} ‘{Serializable State3} ‘{Serializable

Error3}

18 {C1 : Contract Setup1 Msg1 State1 Error1}

19 {C2 : Contract Setup2 Msg2 State2 Error2}

20 {C3 : Contract Setup3 Msg3 State3 Error3}

21 (f : ContractMorphism C1 C2) (g : ContractMorphism C2 C3) :

22 lift_cm_to_sm (compose_cm g f) = compose_sm (lift_cm_to_sm g) (lift_cm_to_sm f).

23 Proof.

24 destruct g as [smorph_g msgmorph_g stmorph_g errmorph_g initcoh_g recvcoh_g].

25 destruct f as [smorph_f msgmorph_f stmorph_f errmorph_f initcoh_f recvcoh_f].

26 unfold compose_cm, compose_sm, lift_cm_to_sm.

27 cbn.

28 f_equal;

29 apply proof_irrelevance.

30 Qed.

31

32 (* isomorphic contracts => isomorphic singleton systems *)

33 Theorem c_iso_csys_iso

34 ‘{Serializable Setup1} ‘{Serializable Msg1} ‘{Serializable State1} ‘{Serializable

Error1}

35 ‘{Serializable Setup2} ‘{Serializable Msg2} ‘{Serializable State2} ‘{Serializable

Error2}

36 {C1 : Contract Setup1 Msg1 State1 Error1}

37 {C2 : Contract Setup2 Msg2 State2 Error2} :

38 contracts_isomorphic C1 C2 ->

39 systems_isomorphic (singleton_place_graph C1) (singleton_place_graph C2).

40 Proof.

41 intro c_iso.

42 destruct c_iso as [f [g [is_iso_1 is_iso_2]]].

43 unfold systems_isomorphic.

44 exists (lift_cm_to_sm f), (lift_cm_to_sm g).

45 unfold is_iso_sm.

46 split;

47 rewrite <- lift_cm_to_sm_comp;

48 try rewrite is_iso_1;

49 try rewrite is_iso_2;
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50 now rewrite lift_id_cm_to_id_sm.

51 Qed.

238



Glossary

address An address, or wallet address, is a public key used to represent a destination for transactions on

a blockchain network. Addresses are used to send and receive digital assets, and they are generated

using cryptographic algorithms to ensure security. See also wallet. 19

arbitrage In the context of cryptocurrency, arbitrage refers to the practice of taking advantage of price

differences between different decentralized exchanges (DEXs) or different trading pairs within the

same DEX to make a profit. If a token is priced differently on different DEXs, an arbitrageur

can buy the token on the DEX where it is underpriced, and then sell it on the DEX where it is

overpriced, making a profit. 45, 46

automated market maker An automated market maker (AMM) is a type of decentralized exchange

(DEX) that uses a mathematical formula to determine the price of assets being traded on the

platform. This in contrast to traditional centralized exchanges, which match buyers and sellers and

take a cut of the transaction as a fee. AMMs are commonly used in decentralized finance (DeFi)

applications, and they play an important role in providing liquidity and enabling the trading of

digital assets. 15, 244, 245, 247

Binance Smart Chain Binance Smart Chain (BSC) is a blockchain developed by the Binance exchange.

It is built on top of the Ethereum Virtual Machine (EVM) and uses a similar smart contract language

to Ethereum. 18, 247

blockchain A blockchain is a distributed and decentralized digital ledger that records a secure and

immutable ledger of transactions across a network of computers. Each transaction, bundled into a

block, is cryptographically linked to the previous one, forming a chain of blocks, hence the name

“blockchain.” Blockchains are commonly used for cryptocurrencies like Bitcoin or Ethereum, but

have applications beyond digital currencies including supply chain management, voting systems,

and smart contracts. 15, 17

collateralized In DeFi, an asset is collateralized if it is backed by collateral greater than or equal to its

value, often as part of a crypto lending scheme in DeFi applications. The borrower puts up the

collateral as a guarantee that they will be able to repay the loan. If the borrower defaults, the

lender can seize the collateral to recover their funds, often by auctioning the seized collateral. This
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arrangement is typically mediated by a smart contract and executed automatically. An asset can be

over- or under-collateralized, indicating that the value of collateral exceeds or subceeds, respectively,

the value of the collateralized asset. 47

constituent token A constituent token of a pool is a (typically non-fungible) token which can be pooled

in exchange for a (typically fungible) token, called a pool token. Whether and under what conditions

the pool token can be redeemed for underlying constituent tokens will vary contract by contract,

depending on the tokenomics. 44, 47, 243

cross-chain bridge A cross-chain bridge is an application, not necessarily decentralized, that allows

for the transfer of assets or information between different blockchains. Possible assets that can

be exchanged or transferred include tokens, coins, and other digital assets, even if the blockchains

being bridged have different consensus algorithms, security models, and underlying infrastructure.

15, 19, 20

crypto insurance protocols Crypto insurance protocols are DeFi applications that provide insurance

coverage for assets in the crypto space. These protocols are designed to mitigate the risk of loss

for investors in the event of unexpected events such as hacking, smart contract vulnerabilities, or

market crashes. They typically work by pooling funds from multiple investors, who then share the

risk of loss. Claims are processed and approved by a variety of different mechanisms, depending on

the nature of the insured event and whether or not human intervention is required to assess claims.

15, 241

crypto lending Crypto lending, or decentralized lending, refers to the practice of borrowing and lending

digital assets within the context of blockchain-based financial systems, such as DeFi platforms.

Users can lend their cryptocurrency holdings to others in exchange for earning interest on their loans,

while borrowers can access funds by providing collateral in the form of other cryptocurrencies. These

transactions are facilitated through smart contracts on blockchain networks, instead of traditional

intermediaries like banks. 15, 20, 239, 241

Curve Curve is a decentralized exchange (DEX) on the Ethereum blockchain that specializes in stablecoins

such as USDC, DAI, and USDT. Its key value proposition is low slippage on trades. 19, 46

DAI DAI is a stablecoin on the Ethereum blockchain, pegged to the value of the US dollar. It is minted

as a receipt of debt, where the ETH is held in a smart contract as collateral to a loan. Interest

rates on the loan fluctuate in response to market prices in order to stabilize the price of DAI. 89,

106, 240, 242

decentralized application A decentralized application (dApp) is a software application that runs on a

decentralized network like a blockchain, and is not controlled by any central authority. Decentralized

applications can be used for a variety of purposes, ranging from financial applications like exchanges,

to gaming platforms, and social media sites. 241, 247
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decentralized autonomous organization A decentralized autonomous organization (DAO) is a type

of organization that is run using rules encoded in a smart contract, on a blockchain. DAOs are

designed to operate without the need for intermediaries or a central authority. Members of a

DAO participate by holding and voting with governance tokens, or tokens that represent rights

or ownership in the organization, and decisions are made through a consensus mechanism such

as voting or staking. DAOs are often used in DeFi as a way to create and manage decentralized

investment funds, decentralized exchanges, or other types of decentralized organizations. 89, 247

decentralized exchange A decentralized exchange (DEX) is a type of decentralized marketplace that

operates on a blockchain, allowing users to trade cryptocurrencies and digital assets directly with

each other without the need for intermediaries. Examples of DEXs include, but are not limited to,

automated market makers AMMs and decentralized auctions. 15, 239, 240, 244, 245, 247

decentralized finance Decentralized finance (DeFi) refers to a financial ecosystem built on blockchain

technology that largely operates without traditional intermediaries. It enables peer-to-peer trans-

actions and interactions with digital assets through smart contracts and decentralized protocols.

DeFi includes various services like lending, borrowing and trading. DeFi applications include, but

are not limited to, DEXs, AMMs, crypto lending, and crypto insurance protocols. 15, 20, 106, 247

decentralized governance Decentralized governance refers to a system of decision-making and admin-

istration in which power is distributed among a network of individuals or entities, rather than being

centralized in a single governing body. In the context of blockchain technology and cryptocurren-

cies, decentralized governance typically refers to a system in which stakeholders collectively make

decisions about the direction and management of a particular network or protocol, often through

the use of decentralized voting mechanisms or on-chain proposals. 18

DEX aggregator A DEX aggregator is a platform that enables users to trade cryptocurrencies across

multiple decentralized exchanges (DEXs) at once, using complex algorithms to find the best prices

across all supported exchanges. 106

entrypoint function A contract entrypoint function is a public-facing function that allow users to

interact with the smart contract and make changes to its state. Examples of entrypoint functions in

a smart contract might include functions to transfer funds, mint new tokens, vote on proposals, or

access information about the state of the contract. In general, the entrypoint functions are defined

by the contract developer and are intended to provide a way for external users to interact with the

contract in a meaningful way. 16

Ethereum Ethereum is a decentralized, open-source blockchain platform that enables the creation and

execution of smart contracts and decentralized applications (dApps). It was created in 2015 by

Vitalik Buterin and has since become one of the largest and most widely used blockchain platforms

in the world. Its native token, ETH, is used to pay for gas fees. It also supports Solidity, a Turing-

complete programming language, which allows developers to build a wide variety of applications,
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from decentralized exchanges and prediction markets to games and social networks. 16, 19, 22, 108,

239, 240, 242–245, 247

Ethereum Virtual Machine The Ethereum Virtual Machine (EVM) is a decentralized, Turing-complete

virtual machine that serves as the runtime environment for executing smart contracts on the

Ethereum blockchain. Developers can write and deploy smart contract code in high-level program-

ming languages like Solidity, which is then compiled into bytecode that can be understood and

executed by the EVM. 239, 244, 247

flash loan In DeFi, a flash loan is a type of decentralized loan that allows a user to borrow funds for

a single, atomic transaction, without collateral and with a very low interest rate. The must loan

is repaid automatically at the end of the transaction. Any transaction that takes out a flash loan

which does not end in repayment is invalid. Flash loans are used for a variety of purposes in DeFi,

including exploiting market inefficiencies and executing arbitrage strategies. 18, 19, 242

flash loan attack A flash loan attack is a type of exploit in DeFi in which an attacker uses funds

borrowed with a flash loan to execute a series of manipulative trades or arbitrage opportunities.

The attacker profits from these trades at the expense of other users, such as liquidity providers,

taking advantage of the borrowed funds without bearing any risk or requiring collateral. 18, 106

fractionalize In the context of non-fungible tokens (NFTs), “fractionalizing” refers to the process of

dividing ownership of a single NFT into smaller, tradeable fractions or shares, typically as fungible

tokens. 38

front-running attack In a front-running attack, an actor inserts certain transactions in a block ahead

of others which, by their order, are profitable by gaining an unfair advantage and causing financial

losses to victims. This manipulation involves monitoring pending transactions, identifying lucrative

opportunities, and quickly submitting their own transaction with higher fees to exploit market

inefficiencies. 17, 36

fungible See fungible token. 38, 240, 243

fungible token A fungible token is a type of digital asset that represents a unit of value that is

interchangeable with other units of the same value. This means that each unit of the token

is identical and interchangeable with any other unit. Examples of fungible tokens include the

cryptocurrencies BTC or ETH, stablecoins USDC or DAI, or other tokens conforming to the ERC20

token standard. 242, 247

gas Gas is a term used to describe the fee required to process a transaction on Ethereum and other

blockchains, paid in the blockchain’s native token (e.g. ETH). The amount of gas required for a

transaction depends on the computational complexity of the operation being performed and the

demand for block space. 20, 67, 105, 241
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governance token A governance token is a type of token used to facilitate decision-making in a

decentralized organization, such as a DAO. Holders of governance tokens can be given voting rights

that allow them to participate in decisions relevant to the organization, such as changes to the

organization’s protocol or the allocation of funds. Governance tokens can also be used to propose

and vote on changes to the organization’s governance structure, as well as to elect or recall members

of the organization’s leadership. 89, 106, 241

liquidity provider In DeFi, a liquidity provider is an entity who supplies their digital assets to liquidity

pools, enabling trading and financial activities on the platform and earning rewards in return. 16,

66, 242, 243

LP token An LP token, short for liquidity provider token, is a digital asset issued to liquidity providers

in DeFi platforms, representing their share in a liquidity pool and enabling them to manage and

withdraw their deposited assets and rewards. 47, 106, 243

non-fungible See non-fungible token. 240, 243

non-fungible token A non-fungible token (NFT) is a unique and indivisible digital asset built on

blockchain, often representing ownership of distinct items like digital art, collectibles, or virtual real

estate. NFTs are associated with the ERC721 token standard on Ethereum. 37, 242, 243, 247

peg A peg in the context of digital assets refers to a fixed exchange rate between a cryptocurrency and

a real-world asset, such as the US dollar or gold. A pegged asset or cryptocurrency is one whose

value maintains a stable value at some peg. Some pegged assets are backed by a reserve of the asset

they are pegged to, which can help ensure the stability of the peg even during market fluctuations.

Others maintain their peg algorithmically through various debt mechanisms. 106, 240, 244

pool In DeFi, a pool is a shared aggregation of assets that provides liquidity for a specific asset or market.

Users can add their own assets to the pool and receive a proportional share of the pool’s tokens,

called LP tokens or pool tokens. These tokens give users a share of the fees generated by the trades

that occur in the pool. 240, 243

pool token A pool token is a (usually fungible) token which can be minted in exchange for pooling a

(usually non-fungible) constituent token into a pool. The terms governing when and under what

conditions the pool token can be redeemed for underlying constituent tokens are set by the contract

governing the pool. 38, 47, 240, 243

price oracle In DeFi, a price oracle is a source of truth for the current price of a cryptocurrency or

other asset. A price oracle is typically a smart contract to which information about the price of an

asset from an external data source, such as an exchange, is pushed, and provides it to other smart

contracts in a standardized format. In order for a price oracle to be effective, it must be reliable

and resistant to tampering and manipulation. 19, 106
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slippage In the context of decentralized exchanges (DEXs) and automated market makers (AMMs),

slippage refers to the difference between the expected price of an asset and the actual price at which

it is traded, which can differ due to the changing market conditions such as an large trades. This is

particularly relevant in DeFi, where price slippage can have a significant impact on the profitability

of trading strategies such as arbitrage. 240

smart contract A smart contract is a computer program, stored on a blockchain, that automatically

executes when certain conditions are met. Smart contracts do not require intermediaries to enforce

their terms. They can facilitate exchange of assets, such as cryptocurrencies, and have a wide

variety of use cases. 15, 18, 239

Solidity Solidity is a high-level programming language for writing smart contracts that can be compiled

into bytecode be executed on the Ethereum Virtual Machine (EVM), and stored on the Ethereum

blockchain. 22, 241, 242

stablecoin A stablecoin is a type of cryptocurrency designed to maintain a stable value, typically

pegged to a stable asset, such as a fiat currency (e.g., USD, EUR) or a commodity (e.g., gold).

The main goal of stablecoins is to reduce price volatility commonly associated with traditional

cryptocurrencies like Bitcoin or Ethereum, providing a more reliable medium of exchange and

store of value. Stablecoins achieve stability through various mechanisms, such as collateralization,

algorithmic control, or a combination of both, which are designed to ensure that the value of the

stablecoin remains relatively constant over time. 15, 18, 20, 36, 89, 106, 240, 244, 245

synthetics Synthetics are digital assets that are designed to track the price of another asset, such as a

traditional financial instrument, a commodity, or another cryptocurrency. They include, but are

not limited to, stablecoins, and like stablecoins maintain their peg through various mechanisms

such as collateralization, algorithmic control, or a combination of both. 15, 106

Tezos Tezos is a third-generation, proof-of-stake blockchain which supports smart contracts written in

Michelson. Its native token is XTZ. 15, 22, 244, 247

token A token is a digital asset that represents a unit of value and can be traded on a blockchain

platform. Tokens can serve a variety of purposes, such as representing ownership in a company,

access to a particular product or service, or as a medium of exchange. Tokens can be created using

smart contracts on blockchain platforms, such as Ethereum, and they are typically stored and

traded using a digital wallet. Tokens are standardized on most blockchains, for example the ERC20

and ERC721 standards on the Ethereum blockchain, and the FA2 standard on the Tezos blockchain.

89, 106, 107, 242–245, 247

tokenization Tokenization is the process of converting ownership rights or assets, external to the

blockchain, into a blockchain-based digital representation such as a token. 244

tokenize See tokenization. 245
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tokenized carbon credit Tokenized carbon credits are tokens, stored on a blockchain, that represent

a carbon credit, typically a unit of carbon emissions reduction. Most are tokenized from legacy

organizations that verify carbon emissions reductions such as Verra. 37, 38

tokenomics Tokenomics, a portmanteau of “token” and “economics,” refers to the study and design

of the economic system and incentives behind a cryptocurrency or digital token. It encompasses

the rules, policies, and mechanisms that determine the creation, distribution, usage, and value

of the tokens within a blockchain or decentralized ecosystem. Tokenomics plays a crucial role in

determining the success and sustainability of a cryptocurrency or digital token project. 36, 106, 240

transaction A transaction is an action or operation that alters the state of the blockchain network. It

typically involves the transfer of digital assets, such as cryptocurrencies or tokens, from one user

to another, but can also encompass various other types of interactions, such as smart contract

executions, data storage, or authentication processes. Transactions are recorded in blocks and

cryptographically linked together. Each transaction must be verified and validated by network

participants, known as miners or validators, to ensure its authenticity and compliance with the

network’s consensus rules before being added to the blockchain. 18, 245

Uniswap Uniswap is a decentralized exchange (DEX) built on the Ethereum blockchain. It was the first,

and is arguably the most popular, automated market maker (AMM). 43, 44, 46, 66

USDC USDC (USD Coin) is a stablecoin pegged to the value of the US dollar. 19, 240, 242

USDT Tether, or USDT, is a stablecoin pegged to the value of the US dollar. 19, 240

vault A vault is a secure digital container or smart contract function designed to hold and manage digital

assets, such as cryptocurrencies or tokens, in a decentralized and tamper-resistant manner. Vaults

are often utilized in DeFi protocols to facilitate various financial operations like lending, borrowing,

and yield farming. They are programmed with specific rules and conditions governing the access,

withdrawal, and management of the assets they hold, and they aim to provide a high level of security

and transparency. Vaults can have different strategies and mechanisms to optimize asset utilization,

protect against risks, and maximize returns for users within the blockchain ecosystem. 19

wallet In the context of a blockchain, a wallet refers to a public, private key pair which can be used to

execute transactions on a blockchain and hold digital assets. Transactions originating from a wallet

must be signed by the private key. The term wallet also refers to software or a device that stores

and manages blockchain-based digital assets. 19, 239

yield aggregator A yield aggregator is a type of smart contract that allows users to automatically

aggregate their crypto assets into various yield-generating DeFi protocols. The purpose of a yield

aggregator is to maximize the yield received by the user on their cryptocurrency investments. Yield

aggregators typically work by automatically re-allocating funds to the highest yielding protocols,

taking into account various factors such as fees, liquidity, and performance. 19, 20, 106
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yield farming Yield farming is the practice of providing liquidity to DeFi protocols in exchange for

rewards in the form of interest or tokens. The rewards can come from the fees generated by the

protocols, or through inflation, and are typically distributed to liquidity providers as a way of

incentivizing them to provide liquidity and ensure the stability of the platform. 15, 20, 106, 245
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Acronyms

AMM Automated market maker. 15, 16, 19, 20, 36–38, 43, 44, 46, 47, 66, 106, 117, 118, 239, 241

BSC Binance Smart Chain. 18

DAO decentralized autonomous organization. 89, 106, 243

dApp decentralized application. 241

DeFi decentralized finance. 15, 18, 20, 37, 43, 106, 107, 118, 133, 239–246

DEX Decentralized exchange. 15, 20, 106, 107, 118, 239–241

ERC20 A token standard for fungible tokens on the Ethereum blockchain. 38, 242, 244

ERC721 A token standard for non-fungible tokens on the Ethereum blockchain. 243, 244

ETH The native token of the Ethereum blockchain. 20, 240–242

EVM Ethereum Virtual Machine. 22, 239

FA2 A generic standard on the Tezos blockchain for fungible and non-fungible tokens. 244

NFT See non-fungible token. 37, 38, 242

XTZ The native token of the Tezos blockchain. 244
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