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Introduction

In this paper we will define a seqeuence of positively graded groups associated to any
topological space X, and called the homotopy groups of X. These come as the natural,
higher degree analogues of the familiar fundamental group, and in degrees higher than 1
are abelian. Analogous to the fundamental group of a space X being denoted π1(X,x0),
the notation for the ith homotopy group of X is πi(X,x0). However, as opposed to other
topological invariants, such as homology groups, homotopy groups can be extremely difficult
to compute; in exchange, however, they give a great deal of information—in particular about
CW-complexes.

For this reason we will focus our attention only on the homotopy groups of spheres,
πi(S

n). In contrast to the homology groups, these are surprisingly nontrivial, and even a
little bit chaotic. They are also not as easy to compute as the corresponding homology
groups. In fact, they are so difficult that they have not all been discovered!

We will begin in Section 1 with the basic definitions of homotopy groups, and show some
basic facts about them. In Section 2 we will characterize all homotopy groups of S1, which
is the only sphere for which calculations of the homotopy groups can be done with basic
knowledge of covering spaces.

We will then characterize some of the higher homotopy groups of in order of difficulty.
In Section 3, we will show that πi(S

n) ∼= 0 if i < n. In Section 5, we will proceed to the
case that i = n and show that πn(Sn) ∼= Z for all n ≥ 1. And finally, in Section 6 we will
discuss the much more copmlicated case of πi(S

n) when i > n. This results in two theories:
stable and unstable homotopy groups. We will concentrate only on the stable homotopy
groups, and in Section 6.2 we will show the amazing result that stable homotopy groups
form a graded commutative ring.

Throughout this document, we will assume that the reader is familiar with the material
covered in a standard introductory course on algebraic topology. This includes topological
(co)homology theory and standard results about the fundamental group and covering spaces.
As we move through the material, we will closely follow Chapter 4 of Allen Hatcher’s book
Algebraic Topology. The proofs of most major theorems given in this document follow the
general logic of Hatcher’s proofs, but are not identical to them.

1 Definitions and Important Concepts

We will use the standard notation of ft for a homotopy F : [0, 1]×X → Y , where ft(x) :=
F (t, x) for all x ∈ X. We will also denote (X,A) to be a topological pair, where X is a
topological space and A ⊆ X is a subspace ofX. A map of pairs, written f : (X,A)→ (Y,B)
is a map f : X → Y such that f(A) ⊆ B. Also, if X is a topological space with subspace A,
then a homotopy rel A is a homotopy ft : X → Y such that for all a ∈ A, ft(a) is a constant
map while varying over t. Finally, unless otherwise specified we will use the conventional
CW-structure on Sn, which is one 0−cell and one n−cell, where the gluing map identifies
the entire boundary of the n−cell to the 0−cell (here, of course, n > 0).
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With these definitions and conventions, we are ready to move on to the definition of
homotopy groups.

Definition 1.1. Let (X,x0) be a topological pair, and let s0 ∈ Sn for n > 0. Then the
ith homotopy group of X with basepoint x0, written πi(X,x0), is the set of homotopy
classes of maps (Sn, s0)→ (X,x0).

Proposition 1.1. πi(X,x0) is a group for i > 0, and is abelian for i ≥ 2

Proof. Let [f ] and [g] be two homotopy classes of maps in πi(X,x0). We will define a natural
operation which generalizes concatonation, the operation of the fundamental group. Recall
that for two loops γ and σ in π1(X,x0), we obtain the loop γ ·σ taking γ(2t) on the first half
of the unit interval, and then σ(2t− 1

2) on the second half. This gives a new loop centered
at x0 which we call γ ·σ, and which is well-defined on equivalence classes (any homotopy ht
between γ and γ′ can simply be applied to γ · σ by h2t on the first half of the unit interval,
and the identity map on the second half to give that γ · σ ∼ γ′ · σ).

Thus to define f · g in πi(X,x0), we simply perform a the analogous action of mapping

Si
ϕ→ Si ∨ Si f ·g→ X where the map ϕ simply collapses the (i − 1)−dimensional “equator”

of Si (chosen to contain s0), and the map f · g applies f to the northern hemisphere, and
g to the southern hemisphere in such a way that the wedge point is mapped to x0. This
operation is well-defined on homotopy classes for the same reason as the one-dimensional
case given above, is clearly associative and has identity the constant map Si 7→ x0. Finally,
each map f has inverse f ◦ −id, where −id is the antipodal map, and thus πi(X,x0) is
indeed a group.

There is a simple, geometric argument which shows that πi(X,x0) is abelian for i ≥ 2
by considering a a map (Si, s0)→ (X,x0) equivalently as a map (Ii, ∂Ii)→ (X,x0). Then
when we consider [f ] · [g] as we did above, we subdivide Ii in two halves. While main-
taining homotopy equivalence, we can continuously shrink these two halves in Ii, mapping
everything in their complement to x0, and then continuously exchange places of both parts.
Then if we enlarge these halves to, again, fill all of In, we have a homotopy equivalence be-
tween [f ] · [g] and [g] · [f ], and so πi(X,x0) is abelian (for a slightly more detailed argument,
included with pictures, see [1], pp.340-41).

It is simple to verify that if X is path connected, then πi(X,x0) is independent of choice
of x0. To show this, let x0, x1 ∈ X and let γ : I → X be a path such that γ(0) = x0 and
γ(1) = x1. Consider f : (Ii, ∂Ii) → (X,x0). While maintaining homotopy equivalence, we
can define a map f : (Ii

′
, ∂Ii

′
)→ (X,x0), where Ii

′
is obtained from Ii by homeomorphically

enlarging Ii along straight lines from any point in the interior of Ii, in such a way that each
point on ∂Ii is uniquely connected to a point on the boundary of Ii

′
by a straight line

homeomorphic to [0, 1]. Then we can simply define the image of each of these lines to be
the image under the path γ, which will gives us fγ : (Ii

′
, ∂Ii

′
) → (X,x1) which sends the

boundary of Ii
′

to x1 instead of x0. Since by construction Ii
′ ∼= Ii, these two maps are

homotopic, and thus if either fγ or f is homotopic to another map g, the same is true for f
or fγ , respectively. So the homotopy class of f is in 1−1 correspondence with the homotopy
class of fγ . Note further that this operation is compatible with the group structure on both
πi(X,x0) and πi(X,x1). Since this is true for all maps, and so πi(X,x0) ∼= πi(X,x1) for all
x0, x1 ∈ X.

Thus in the case that X is path connected, we will simply write πi(X). In particular,
we will write πi(S

n) for the ith homotopy group of Sn.
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Additionally, note that for i < 0, based on our given definitions, πi(X) doesn’t make
any sense. Also, π0(S

n) gives no interesting information about Sn, as every map S0 → Sn

is nullhomotopic. Furthermore, for any n ≥ 1, the set of homotopy classes of maps Sn → S0

contains two elements which cannot relate to each other in any reasonable way, and which
do not make particular sense by the definitions above. If we desire to endow π0 with a group
structure, our definitions would give that πn(S0) ∼= 0 × 0 ∼= 0, π0(S

n) ∼= 0 for n > 0, and
π0(S

0) ∼= 0× 0× 0× 0 ∼= 0. The interesting groups begin at i = 1, and thus our treatment
of homotopy groups will only focus on πi(S

n) where i, n ≥ 1.
Our final observation before moving on to relative homotopy groups is that πi(X) is

functorial in X, in that a continuous map ϕ : X → Y induces a map ϕ∗ : πi(X) → πi(Y )

for all i via composition with φ, i.e. (Si → X) 7→ (Si → X
ϕ→ Y ). This is, of course,

well-defined on homotopy classes (if f ∼ f ′, then (f ◦ g) ∼ (f ′ ◦ g) and (g ◦ f) ∼ (g ◦ f ′)
via essentially the same homotopy) and also a group homomorphism, as ϕ ◦ (f + g) ∼
(ϕ ◦ f) + (ϕ ◦ g). The identity map is sent to the identity, as well as compositions to
compositions. Thus πi(−) is a functor from topological spaces to (abelian if i ≥ 2) groups.

1.1 Relative Homotopy Groups

We will now introduce a very useful notion that will be used for some of the theorems we
will prove in Section 6.1. This is the notion of relative homotopy groups. There are
two equivalent ways of defining them, which we will present below.

For the first, consider In, where I = [0, 1], and In−1 be the (n− 1)−face of In which is
zero in the last coordinate. Then define Jn−1 to be the union of all the (n− 1)−faces of In

except In−1. Equivalently, Jn−1 is the closure of ∂In \ In−1. Then we have a definition:

Definition 1.2. Let (X,A) be a topological pair and let x0 ∈ A. The relative homotopy
group of the pair (X,A), written πn(X,A, x0), is the set of homotopy classes of maps of
the form (In, ∂In, Jn−1)→ (X,A, x0).

Note that this definition allows us to use the same sum operations that we had before,
and if A is connected, is independent of basepoint x0, and so in that case we can simply write
πn(X,A) (in our case we will concern ourselves only with maps of spheres and connected
subspaces of spheres, and so we will omit the basepoint in all of our calculations).

The most obvious alternate and equivalent definition of homotopy groups of spheres is
as follows

Definition 1.3. Let (X,A) be a topological pair. Then the nth relative homotopy group of
(X,A), denoted πn(X,A), is the set of homotopy classes of maps of pairs (Dn, Sn−1, s0)→
(X,A, x0) with the group operation on πn(X,A) defined analagously as from Definition 1.2.

Note that by these definitions, a map (In, ∂In, Jn−1)→ (X,A, x0) or (Dn, Sn−1, s0)→
(X,A, x0) represents the zero class in the relative homotopy group if it is homotopic rel A
to a map whose image lies entirely in A.

Of course, we regain the absolute homotopy definition by letting A = x0 and noting
that the definitions are equivalent. Thus, absolute homotopy groups are just a special case
of relative homotopy groups.

One of the most helpful and enlightening contributions of relative homotopy groups is
that they give us long exact sequences, which are extremely useful for calculating homotopy
groups. The long exact sequence we present here will be used in the proof of Theorem 6.1.
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Lemma 1.1. Let (X,A) be a topological pair, and let x0 ∈ A. Then the following sequence
is exact:

· · · → πn(A, x0)
i∗→ πn(X,x0)

j∗→ πn(X,A, x0)
∂→ πn−1(A, x0)→ · · · → π0(X,x0)

where i∗ and j∗ are the maps induced by the inclusions i : (A, x0) ↪−→ (X,x0) and j :
(X,x0, x0) ↪−→ (X,A, x0) and the boundary map ∂ is given by restricting a map (Dn, Sn−1, s0)→
(X,A, x0) to Sn−1 (or, equivalently, (In, ∂In, Jn−1) → (X,A, x0) to In−1). This gives a
map πn(X,A, x0)→ πn−1(A, x0) for all n ≥ 2.

And with just a little more work, the proof for Lemma 1.1 yields the following:

Lemma 1.2. Let (X,A,B, ) be a topological triple, meaning that B ⊆ A ⊆ X. Also, let
x0 ∈ B. Then the following sequence is exact:

· · · → πn(A,B, x0)
i∗→ πn(X,B, x0)

j∗→ πn(X,A, x0)
∂→ πn−1(A,B, x0)→ · · · → π1(X,A, x0)

with i∗ and j∗ the obvious analogues of Lemma 1.1

In favor of proving more central statements to the theory of homotopy groups of spheres,
we will not give these proofs in this document. However, we refer the reader to Theorem
4.3 of [1] for a complete proof.

2 The Homotopy Groups of S1

We will begin our analysis of homotopy groups of spheres by characterizing the homotopy
groups of S1. As opposed to higher-dimensional spheres, all the homotopy groups πi(S

1)
can be computed using elementary theory of the fundamental group from an introductory
algebraic topology course. It becomes much more difficult to compute these groups for
higher-dimensional spheres.

Proposition 2.1.

πi(S
1) ∼=

{
Z, i = 1

0, i > 1

Proof. It is a basic result from elementary algebraic topology that π1(S
1) ∼= Z. So we only

need to show that for all i > 1, πi(S
1) ∼= 0.

This follows immediately because for all n > 1, Sn is simply connected, and so π1(S
n) ∼=

0. Thus, any map f : Sn → S1 induces a map f∗ : π1(S
n) → π1(S

1) which is the unique
map f∗ : 0 → Z. Since the universal cover of S1 is R, and π1(R) ∼= 0, the image of f∗ lies
in the image of p∗, where p : R → S1 is the projection of the universal cover. Thus f can
be lifted to a map g : Sn → R such that f = p ◦ g. But R is contractible, and thus g is
nullhomotopic, giving that f = p ◦ g is also nullhomotopic.

You’ll note that the key element of this proof was the fact that S1 has a contractible
universal cover. But this is false for spheres of finite dimension higher than 1 because for
n ≥ 2, Sn is simply connected, and thus Sn is its own universal cover. We need a little more
machinery in order to calculate πi(S

n), n ≥ 2, as even at n = 2 we get highly nontrivial
homotopy groups.
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3 Homotopy Groups πi(S
n) for i < n

We will begin looking at higher dimensional spheres with the case that i < n. It turns out
that all groups of this form are trivial. This might match the reader’s intuition because for
all n, Sn+1 is a suspension of Sn, and thus the subspace of Sn+1 corresponding to Sn can
be continuously deformed to a point. So, at a glance it would seem to be the case that any
map Sn → Sn+1 should be homotopic to a constant map.

This might sound trivial, but, while this result holds, it does not come for free. We
might even hope that we could prove something to the effect that any map Sn → Sk, with
n < k, is not surjective. If that held, then we could choose a point in Sk which is not in
the image, and note that its complement is homeomorphic to Dk, which is contractible,
and we would have our result. While any map Sn → Sk is homotopic to a nonsurjective
map, a surjection S1 � Sk, and similarly a surjection Sn � Sk, can be constructed with
space-filling curves.

We will need a much stronger result, which is quite remarkable. Before introducting the
result, we will need the following notion:

Definition 3.1. Let X,Y be CW-complexes, where Xn and Y n denote the n−skeletons of
X and Y , respectively. Then a map f : X → Y is cellular if, for all n, f(Xn) ⊆ Y n.

Of course, for all i, Si is a CW-complex with one 0−cell and one i−cell. So if we could
show that, for n < k, any map Sn → Sk, is homotopic to a cellular map, then we would
immediately have our result because the n−skeleton of Sk is a single point.

As it turns out, this result holds for any continuous map between CW-complexes. This
theorem is called the Cellular Approximation Theorem, and is quite general in scope. Re-
gardless, will need the theorem in its most general form in order to prove some of our results
further on. So, we will prove it and get that if i < n, πi(S

n) ∼= 0 as a corollary.
The proof becomes very straightforward with the help of the following technical lemma.

Lemma 3.1. Let f : In → Z be a map, where Z is obtained from a subspace W by attaching
a cell ek. Then f is homotopic rel f−1(s) to a map f1 such that there is a k−simplex
∆k ⊂ ek where f−11 (∆k) is a (possibly empty) union of finitely many convex polyhedra and
f1 restricted to each of them is a linear surjection Rn → Rk.

Note that in the case that n < k, there do not exist any linear surjections Rn → Rk,
and so f−11 (∆k) = ∅.

Proof. Consider the isomorphism ek ∼= Rk, and let Bi ⊆ Rk be a closed ball of radius i
centered at the origin. Then since f is continuous, f−1(B2) is closed, and thus compact in
In as In itself is compact. It is a standard result in introductory analysis courses that a
continuous map is uniformly continuous on a compact subset. So f is uniformly continuous
on f−1(B2). Thus there exists some ε > 0 such that if |x − y| < ε, then |f(x) − f(y)| < 1

2
for all x, y ∈ f−1(B2). Subdivide I such that the induced subdivision In has n−cubes of
diameter less than ε. Then let K1 be the union of all such (closed) cubes which intersect
f−1(B2), and let K2 be the union of all such cubes which intersect K1. Then we have
obvious inclusions f−1(B1) ⊂ K1 ⊂ K2 ⊂ f−1(B2), where K2 ⊂ f−1(B2) because each
point in f(K2) has distance less than 1

2 from any point in f(K1), which itself has distance
less than 1

2 from B1. Since the minimum distance from any point of ∂B2 to any point of
∂B2 is 1, the inclusion holds.
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Now note that we can view K2 as a CW-complex, where for all i ≤ k, the i−cells of
K2 are the open i−faces of the k−dimensional cubes of K2. We can build a simplicial
structure on K2 inductively via the barycentric subdivision of the cubical cells. That is, we
can build a simplicial structure by taking the vertices of the simplicial structure to be the
center points of the cells and then taking cones of the simplicial structure on the boundary
of each cubical cell to the center point of the cell. A simplicial structure of the boundary
induces a simplicial structure on the cone, so we have a well-defined simplicial structure on
K2.

Now let g : K2 → ek ∼= Rk be a map that equals f on all vertices of our given simplices
and is linear when restricted to each simplex. Then define a map ϕ : K2 → I where
ϕ(∂K2) = 0 and ϕ(K1) = 1 (we can clearly build this map because of the distance ∂K2

from K1). Then we define a homotopy ft : K2 → ek via the formula

ft = (1− tϕ)f + (tϕ)g.

Of course, f0 = f , and the restrictions of both f1 and g to K1 are equal. We can extend ft
by noting that ft is constant on ∂K2 and so we can simply extend ft to the rest of In by
letting it be constant on the complement of K2 as well.

As one of our final steps, we will need to show that there is an open neighborhood of 0,
N ⊂ B1, such that f−11 (N) ⊂ K1. This is equivalent to showing that f1(K

c
1) ⊆ N c, where

Xc is the complement of X. Since f1 = f on the complement of K2, f1(K
c
2) ⊆ Bc

1 and so
f1(K

c
2) is contained in the complement of any such open neighborhood N .

Then for K2 \K1, consider a simplex σ from the simplicial structure we defined on K2.
This is mapped under f to a ball Bσ with radius 1

2 . Then since Bσ is convex, g also maps σ
into Bσ, and therefore so does f1. In the case that σ is not contained in K1, Bσ intersects
the exterior of B1 and thus does not contain 0, and so it does not contain a neighborhood
Nσ of 0. There are only finitely many such σ’s, so we can choose a neighborhood of 0 in B1,
for example N =

⋂
σ 6⊆K1

Nσ, which is disjoint from f1(σ) for all σ 6⊆ K1. Then f1(K
c
1) ⊆ N c,

and thus f−11 (N) ⊆ K1, as desired.
Finally, consider a simplex ∆k ⊂ N . Then f−11 (∆k) ⊂ K1 is given by the union of its

intersections with simplices σ of K1. Defining Lσ : Rn → Rk to be the linear map given by
restricting g onto σ, each of these intersections is the intersection of σ with L−1σ (∆k). Since
L−1σ (∆k) is a convex polyhedron, each of these intersections is a convex polyhedron. So to
choose our desired ∆k, we need only consider the nonsurjective Lσ’s and choose ∆k to be
in the complement of the image of each Lσ. This is, of course, possible because the image
of each Lσ is just the union of finitely many hyperplanes of dimension less than k.

Thus we have a ∆k which satisfies the conditions of the lemma, and we have our result.

Now with this lemma, we can inductively homotope any map f : X → Y of CW-
complexes to a cellular map, as follows:

Theorem 3.2. (Cellular Approximation Theorem) Let X and Y be CW-complexes. Then
any map f : X → Y is homotopic to a cellular map.

Proof. First, note that any map f : X → Y is homotopic to a map which is cellular on the
0−skeleton. This is because every path component of Y has a 0−cell, and any point in Y
is path-connected to a 0−cell (we can construct a path by simply moving from a point in
Y to the boundary of a cell which contains it; once at the boundary, we can continue to
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the boundary of that cell, etc. This process must terminate at a zero cell, so we can build
our path). Thus we have paths from the image of each 0−cell of X to the 0−cells of Y ,
which then by the homotopy extension property gives us a homotopy of f defined on all of
X which makes f cellular. So we may assume that f is cellular on X0.

Then for our inductive step, suppose that f : X → Y is cellular on Xn−1, and let en be
an n−cell in X. Since the closure of In is compact, the closure of en is compact in X, and
thus its image under f is also compact. Thus f(en) only intersects finitely many cells in Y ,
so we can consider ek, a cell in Y that intersects f(en) such that any other cell intersecting
f(en) has dimension ≤ k. If k ≤ n, then f is already cellular on en, and so we are done
with this cell. For the other case, consider k > n.

Now consider the map f : Xn−1 ∪ en → Y k, and, in particular, its composition with
the characteristic map In → X for en. Then the resulting map is as in the lemma, where
Z = Y k and W = Y k \ ek. The lemma gives us a homotopy which fixes ∂In, and thus
induces a homotopy ft of f |Xn−1 ∪ en fixed on Xn−1. Since k > n, the preimage of the
k−simplex ∆k given by the lemma is empty. Then f is homotopic to a map which does not
surject on ek, and thus we can homotope f |Xn−1 ∪ en so that its image is disjoint from ek.

After finitely many iterations of using the result of Lemma 3.1, we can produce a ho-
motopy which ensures that all the cells which f(en) intersects of dimension strictly higher
than n are missed, and thus f maps en into the n−skeleton of Y .

We can repeat this procedure for each n−cell of X enα, where α is in some (possibly
infinite) indexing set I, and get a homotopy of f |Xn which results in a cellular map. Note
that, by construction, this homotopy is stationary on both Xn−1 and An, and so we have
a homotopy rel Xn−1 ∪ An producing a cellular map. Then by the homotopy extension
property, this homotopy of f |Xn−1 can be extended to a homotopy of f , and so we have a

resulting homotopy f
(n)
t of f which produces a map f

(n)
1 which is cellular on the n−skeleton

of X.
We continue this process and obtain a (possibly infinite) sequence of homotopies

f
(n)
t , f

(n+1)
t , f

(n+2)
t , ...

where f
(k)
t is the homotopy of f

(k−1)
t which produces a map which is cellular on Xk. From

these we can construct a homotopy ft. If X is finite-dimensional, with dimension k, then we
can simply subdivide [0, 1] into k parts and homotope f using fn+l(k−n)t on the lth subdivision

of [0, 1]. If X is not finite-dimensional, then we can do the same, but by dividing [0, 1] into
intervals [1− 1

2n , 1−
1

2n+1 ].
Thus f is homotopic to a cellular map, as desired, and we have our result.

Corollary 3.2.1. πn(Sk) ∼= 0 for all n < k.

Proof. If n < k, any map Sn → Sk is nullhomotopic by Theorem 3.2 and the standard
CW-structure on Si, and thus 0 in πn(Sk).

4 CW Approximation

In the spirit of Theorem 3.2, we will also include a brief introduction to CW-approximation.
The main result of this section does not have any immediate applications to homotopy
groups of spheres, but turns out to be important later on, in particular for the proof of
Theorem 6.1. The most central idea of CW approximation is that CW-complexes are so
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convenient, for several reasons (including Theorem 3.2). So if possible, we would like to
work with CW-complexes, even while working on homotopy groups of general spaces. Thus
for any space X, we want to find a CW-complex that resembles X well-enough to gather
with the homotopy groups of X. This is done in the form of a CW-approximation, which
is a space that not only has isomorphic homotopy groups to X, but also comes with a
map into X that induces the isomorphisms (these are two distinct conditions!). The main,
remarkable result is that for any n we can find such an approximation for any topoloical
space X.

We introduce the main result with the following definitions:

Definition 4.1. Let X be a topological space. Then X is n–connected if πi(X) ∼= 0 for
all i ≤ n. Similarly, a pair (X,A) is n−connected if πi(X,A) ∼= 0 for all i ≤ n.

The condition that πi(X,A) ∼= 0 for all i ≤ n is equivalent to saying that for i ≤ n, any
map Si → X is homotopic rel A to a map whose image is entirely contained in A. Also, by
Corollary 3.2.1, Sn is (n− 1)−connected for all n > 1.

Definition 4.2. Let (X,A) be a topological pair. Then an n–connected CW model for
(X,A) is an n−connected CW pair (Z,A) with a map (Z,A) → (X,A) which restricts to
the identity on A and such that the induced map πi(Z) → πi(X) is an isomorphism for
i > n and an injection for i = n.

We are finally prepared to give the main result of this section:

Theorem 4.1. Let (X,A) be a topological pair, where A is a nonempty CW-complex.
Then there exist n−connected CW models f : (Z,A)→ (X,A) for all n ≥ 0, such that Z is
obtained from A by attaching cells of dimension greater than n.

Proof. We will give a construction for Z as a union of subcomplexes begining with A
and then increasing in a chain A = Zn ⊆ Zn+1 ⊆ · · · where Zk is obtained from Zk+1

by attaching k−cells. By induction, suppose that we have Zk for some k and a map
f : Zk → X which restricts to the identity on A, and where f∗, the induced map on πi,
injects for n ≤ i ≤ k and surjects for n < i ≤ k with respect to a choice of basepoint
xγ ∈ Aγ , the components of A. Our base case, k = n, vacuously satisfies these conditions.

Now for the inductive step, we choose generators of the kernal of f∗ : πk(Zk, xγ) →
πk(X,xγ) for all γ, which are cellular maps ϕα : Sk → Zk. Let Yk+1 be the complex obtained
by attaching cells ek+1

α to Zk via our maps ϕα. By functoriality of πi, the compositions
f ◦ ϕ are nullhomotopic, so we can extend f over Yk+1. Thus the resulting map f∗ :
πk(Yk+1, xγ)→ πk(X,xγ) injects, because any element of the kernel of f∗ is a cellular map,
and is nullhomotopic by construction (f ◦ ϕ is nullhomotopic). Also, because πk(Zk) →
πk(Yk+1) surjects, the composition πk(Zk)→ πk(Yk+1)→ πk(X) also surjects. Furthermore,
the homotopy groups πi for i < k are not affected by attaching cells ek+1

α because i < k <
k + 1. Because π0 has no reasonable group structure, in the case that k = 0 we instead
construct Y1 by attaching 1−cells which join all basepoint 0−cells xγ which lie in the same
path component of X.

Now choose maps ψβ : Sk+1 → X which generate πk+1(X,xγ) for all γ. Define Zk+1 to
be the wedge of Yk+1 with spheres (indexed by β) Sk+1

β , which are wedged at the basepoints

xγ corresponding to each β. Then extend f to Zk+1 by letting f equal ψβ on each Sk+1
β .

This gives us that the map f∗ : πk+1(Zk+1, xγ) → πk+1(X,xγ) surjects. Thus the induced
map of the inclusion map Yk+1 ↪−→ Zk+1 surjects by cellular approximation, and surjects
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because Zk+1 retracts onto Yk+1. Thus the induced map is an isomorphism, which finishes
the inductive step.

Finally, note that the maps f∗ : π(Z, xγ)→ πi(X,xγ) depend only on the (i+1)−skeleton
of Z by construction, and so they are isomorphisms for all i > n and injective on i = n.
This is independent of choice of xγ , as any point in Z can be joined a path to some xγ .

This gives us a corollary which turns out to be key to some of our proofs later on.

Corollary 4.1.1. Let (X,A) be an n−connected CW-pair. Then there exists a CW pair
(Z,A) such that Z ' X rel A where Z \A has cells only in dimension greater than n.

Proof. Consider the pair (Z,A) and map f : (Z,A) → (X,A) from Theorem 4.1. We first
need to check that Z ' X. Of course, by choice and construction, f induces isomorphisms
πi(Z)→ πi(X) for all i > n and an injection on i = n. Also, by construction the inclusions
A ↪−→ Z and A ↪−→ X induce isomorphisms in degrees i < n and a surjection i = n. So f
induces an isomorphism for all n. Our homotopy equivalence comes from Theorem 4.5 of
[1], p.346.

As X and Z are CW-complexes, f is thus a homotopy equivalence. We now only need to
check that X ' Z rel A. To do so, we will use Mf , the mapping cylinder of f . Let W be the
quotient of Mf which collapses each segment {a}×I, where a ∈ A. Then homotope f to be
cellular (by cellular approximation). Thus W is a CW-complex containing both X and Z
as subcomplexes. As Mf deformation retracts onto X, so does W . Furthermore, all groups
πi(W,Z) = 0 because f induces isomorphisms on all homotopy groups πi(W ) ∼= πi(Z).
Thus W also deformation retracts onto Z. Both of these deformation retracts from W onto
X and Z are the identity on A, and thus we have that X ' Z rel A.

5 Homotopy Groups πi(S
n) for i = n

We will now progress in complexity of the homotopy groups πi(S
n) to the case where i = n.

As in the case that i < n, the result that πn(Sn) ∼= Z is intuitively obvious. Indeed, with
the tools of an introductory algebraic topology course, this result comes quickly, as follows:

Proposition 5.1. πn(Sn) ∼= Z for n ≥ 1.

Proof. Note that any nonsurjective map can be homotoped to a constant map, because the
complement of a point is contractible in the sphere. So to calculate the nontrivial classes
of maps f : Sn → Sn in πn(Sn), we only need to look at the case that f surjects. But each
surjective map has a well-defined degree, k ∈ Z \ {0}, which is unique up to homotopy. By
the definition given for concatonation of maps, if [f ] is of degree l and [g] is of degree k,
then [f ] · [g] is of degree l+ k. So the map πn(Sn)→ Z which maps every map to its degree
is well-defined. It injects by the arguments above, and surjects because πn(Sn) is generated
by the identity map, which as degree 1, which has inverse the antipodal map, which has
degree −1. So we have that πn(Sn) ∼= Z, as desired.

This can be proved in a few different ways—we will even give an alternate, nearly
identical proof of this theorem in Section 6, as Corollary 6.1.1.

However, there is a result with which we can prove that πn(Sn) ∼= Z which only makes
use of the homology groups of Sn and the fact that Sn is (n−1)−connected. This remarkable
result, called the Hurewicz theorem, hints at a much deeper and beautiful connection to
(co)homology than we can express in this short paper. Although we will not be able to
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show here, there is a reformulation of the cohomology of a space X which uses homotopy
classes of maps X → K(G,n), where K(G,n) is a space which admits only one nontrivial
homotopy group, G, in degree n (see Section 4.3 of [1]).

For this reason, we will simply state the Hurewicz theorem without proof, and refer the
curious reader to Theorem 4.32 of [1] for a proof.

Theorem 5.1. (Hurewicz theorem) Let X be (n−1)−connected where n ≥ 2. Then H̃i(Z) ∼=
0 for i < n, and πn(X) ∼= Hn(X).

As Sn is (n− 1)−connected by Corollary 3.2.1, we immediately have:

Corollary 5.1.1. πn(Sn) ∼= Z.

6 Homotopy Groups πi(S
n) for i > n

We will now move on to the much more complicated case of πi(S
n), where i > n. It might

come as a surprise to many readers that these groups are highly nontrivial and difficult to
compute, especially since Hi(S

n) ∼= 0 if i > n—and in general, the ith homology groups of
any n−dimensional manifold are always 0 if i > n.

Even intuitively it seems plausible that a map Si → Sn might be nullhomotopic in
general if i > n. But as we find out with the higher homotopy groups of spheres, this is
definitely not the case; these maps behave and vary in a much more chaotic fashion than
one would intuitively expect [2].

Example 6.1. (Hopf fibration) One of the more interesting, motivating examples for this
section is the Hopf fibration (or the Hopf bundle), which is a map f : S3 � S2 not homotopic
to the identity. It’s a good example of a map of nontrivial homotopy type from a higher
dimensional sphere onto S2.

We can most easily see f by considering it as the projection map of the fiber bundle

S1 ↪−→ S3
f
� S2. Here we see S1 as the group of unit-length complex numbers, and S3 as

the group of unit-length quaternions. Then f : S3 � S2 is best understood as the cokernel
of the inclusion S1 ↪−→ S3 of S1 ≤ C into S3 ≤ H.

These groups are extremely difficult to compute, and so we will not be able to give a
sweeping classification like we did in the case that i ≤ n. We will instead focus on a certain
subset of these groups, namely the stable homotopy groups of spheres.

6.1 Stable Homotopy Groups of Spheres

The theory of stable homotopy groups of spheres is as unexpected and remarkable as any-
thing else so far described. It shows that, because an n−sphere can be regarded as the
suspension of an (n− 1)−sphere, there is a sequence of isomorphisms

πi(S
n)→ πi+1(S

n+1)→ πi+2(S
n+2)→ · · ·

which begins, depending on i, at a sufficiently large n. The isomorphism classes resulting
from this form a graded ring, as we will show later on. This is yet another example of the
amazing structure of homotopy groups.

The theorem mentioned, called the Freudenthal suspension theorem, is below, and gives
us the basis for the theory of stable homotopy groups.
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Theorem 6.1. (Freudenthal suspension theorem) Let X be an n−connected topological
space. Then the map of homotopy groups induced by the suspension map πi(X)→ πi+1(SX)
is an isomorphism for i < 2n− 1.

The result from this theorem is that, for any i and n, the maps

· · · → πi−1(S
n−1)→ πi(S

n)→ πi+1(S
n+1)→ · · ·

eventually stabilize to isomorphisms after enough terms, depending on the difference i− n.
So for any i, we can consider the sequence induced by the suspension maps:

· · · → πi+(n−1)(S
n−1)→ πi+n(Sn)→ πi+(n+1)(S

n+1)→ · · · (1)

and note that (1) stabilizes at n = i+ 2. From then on, any group of the form πi+m(Sm),
where m > i + 2, is isomorphic to π2i+2(S

i+2). We call the group π2i+2(S
i+2) the stable

i−stem and write it πsi .

Corollary 6.1.1. πs0
∼= Z

Proof. To prove this result, we only need that πn(Sn) ∼= Z for n ≥ 2. This was proved in
Proposition 5.1, but as promised we will give a slightly more rigorous proof, using Theorem
6.1. Note that Theorem 6.1 gives us a sequence of maps

π1(S
1)

ϕ→ π2(S
2)→ π3(S

3)→ · · ·

where ϕ is a surjection, and the rest are isomorphisms. So we know that for n > 1,
πn(Sn) ∼= Z/ker(ϕ). We also know that πn(Sn) is infinite, because for any n we can
construct a map Sn → Sn of degree k for any k ∈ N. Thus ϕ has a trivial kernel, and
πn(Sn) ∼= Z, as desired.

Before moving on to the proof of Theorem 6.1 we will need to prove the following
proposition, called Excision for Homotopy Groups:

Proposition 6.1. (Excision for Homotopy Groups) Let X be a CW-complex and let A,B ⊆
X be subcomplexes of X such that A∪B = X and C = A∩B 6= ∅. If (A,C) is m−connected
and (B,C) is n−connected such that m,n ≥ 0, then the map πi(A,C)→ πi(X,B) induced
by the inclusion is an isomorphism for i < m+ n and a surjection for i = m+ n.

Proof. We proceed by cases.
Case 1: First note that A is obtained from C by attaching cells em+1

α , and B is obtained
from C by attaching a single cell en+1. We will show that πi(A,C) → πi(X,B) is an
isomorphism, and we will begin by showing surjectivity. To do so, consider a map f :
(Ii, ∂Ii, J i−1)→ (X,B, x0). Because Ii is compact, the image of f is compact and therefore
intersects only finitely many of the cells em+1

α and en+1. Thus by finitely many iterations
of applying Lemma 3.1, we can homotope f , through maps of the form (Ii, ∂Ii, J i−1) →
(X,B, x0) (i.e., all the maps still map ∂Ii into B and J i−1 to x0) such that, for simplices
∆m+1
α and ∆n+1 corresponding to the cells that the image of f intersects, f−1(∆m+1

α ) and
f−1(∆n+1) are finite unions of convex polyhedra, such that on each f is is the restriction
of a linear surjection from Ri to Rm+1 or Rn+1.

Then we will need the following fact:
Fact: if i ≤ m + n, then there exist points pα ∈ ∆m+1

α and q ∈ ∆n+1, and a map
ϕ : Ii−1 → [0, 1) such that:
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1. f−1(q) lies below the graph of ϕ in Ii−1 × I = Ii.

2. f−1(p) lies above the graph of ϕ for each α.

3. ϕ = 0 on ∂Ii−1.

For a complete proof of the fact, refer to [1], p.362.
Given this fact, let ft be a homotopy of f which excises the region under the graph of ϕ

by restricting f to the region above the graph of tϕ for t ∈ [0, 1]. Then let P =
⋃
α
{pα} and

Q = {q}, and note that by (2), ft(I
i−1) ∩ P = ∅ and f1(I

i) ∩Q = ∅ by (1). Then consider
the following diagram:

πi(A,C) −−−−→ πi(X,B)

∼=
y y∼=

πi(X \Q,X \Q \ P ) −−−−→ πi(X,X \ P )

and note that the class of our map [f ] in πi(X,B), when regarded as its isomorphic image
in πi(X,X \P ), is equal to the element [f1] from our homotopy ft, which is in the image of
the map πi(X \Q,X \Q \ P )→ πi(X,X \ P ). Thus we have surjectivity.

We now consider injectivity. Let f0, f1 : (Ii, ∂Ii, J i−1) → (A,C, x0) be representatives
of two classes in πi(A,C) such that, under the map πi(A,C) → πi(X,B) induced by the
inclusion (A,C)→ (X,B), they are mapped to the same class in πi(X,B). That gives us a
homotopy from f0 to f1 of the form of a map F : [0, 1]× (Ii, ∂Ii, J i−1)→ (X,B, x0). Then
by deformation, again using Lemma 3.1, we can construct a map ϕ : Ii−1×I → [0, 1) which
separates F−1(p) from the sets F−1(pα) as in the surjectivity case. Thus, again as before,
we can excise F−1(p) from the domain of F , giving us that f0 and f1 are two representatives
of the same class in πi(A,C, x0). However, injectivity only holds for i < m+ n, as opposed
to surjectivity, because in the proof of injectivity, Ii× I plays the role that Ii played in the
surjectivity proof, and so now we have the requirement that i+ 1 ≤ m+ n, or equivalently
that i < m+ n.
Case 2: We will now prove the proposition for the case that A is obtained from C by
attaching cells of dimension ≥ n+1. To show first the surjectivity πi(A,C)→ πi(X,B), we
consider a map f : (Ii, ∂Ii, J i−1) → (X,B, x0) which is a representative of an equivalence
class in πi(X,B). As in Case 1, the image of f is compact, and thus intersects only finitely
many cells (by the weak topology), and thus by iterations of Case 1 we can homotope f off
the cells of B \C one at a time, beginning from the cell of largest dimension and each time
decreasing dimension. For injectivity, the proof is very similar as in Case 1, where we begin
with a homotopy F : [0, 1]× (Ii, ∂Ii, J i−1) → (X,B, x0) and pushing F off cells in B − C.
Again, for the same reasons, we get an isomorphism for i < m + n, but only a surjection
for i = m+ n.
Case 3: In our final case before moving to the general case, we consider the case that A is
obtained from C by attaching cells of dimension ≥ m+1 and B as before, in Case 2. Recall
that by cellular approximation (Theorem 3.2) the cells of dimension higher than m+ n+ 1
have no effect on πi if i ≤ m+n. Thus we can assume without loss of generality that A \C
only has cells of dimension ≤ m + n + 1. Then let Ak ⊆ A be C ∪ Ak, where Ak is the
k−skeleton of A, and let Xk = Ak ∪ B. We will proceed by induction on k, proving the
result for maps of the form πi(Ak, C)→ πi(Xk, B).
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Our base case is k = m + 1, which is Case 2, and so has been proved already. Then
for the inductive step, we will consider the commutative diagram with rows formed by the
exact sequence of triples (from Lemma 1.2) of (Ak, Ak−1, C) and (Xk, Xk−1, B):

πi+1(Ak, Ak−1) −−−−→ πi(Ak−1, C) −−−−→ πi(Ak, C) −−−−→ πi(Ak, Ak−1) −−−−→ πi−1(Ak−1, C)

1

y 2

y 3

y 4

y 5

y
πi+1(Xk, Xk−1) −−−−→ πi(Xk−1, B) −−−−→ πi(Xk, B) −−−−→ πi(Xk, Xk−1) −−−−→ πi−1(Xk−1, B)

and we will apply the 5−lemma in each case of i to show the desired isomorphism. Note
that if i < m + n, then (1) and (4) are isomorphisms from Case 2, and (2) and (5) are
isomorphisms by the inductive hypothesis. Thus by the 5-lemma, (3) is an isomorphism as
well. Then if i = m+ n, (2) and (4) and (5) is injective, which is all that is needed to show
that (3) surjects in the proof of the 5-lemma. We may have a more complicated situation
when i = 2, as some of the groups may be nonabelian, and πi−1(Ak−1, C) and πi−1(Xk−1, B)
might not even be groups. But with slight changes to the proof of the 5-lemma, the theorem
will still hold (see [1], p.363). Finally, if i = 1, we have the result that π1(A,C)→ π1(X,B)
is either surjective or an isomorphism because if m ≥ 1, then π1(A,C) ∼= π1(X,B) ∼= 0, and
if m = 0, then n ≥ 1 and the result follows by cellular approximation.

Finally, we will treat the general case. By Corollary 4.1.1, because of the assumptions
about connectivity, (A,C) and (B,C) are homotopy equivalent to pairs (A′, C) and (B′, C)
as in Case 3. Furthermore, these homotopy equivalences fix C, and so we can fit these
homotopy equivalences together to get a homotopy equivalence A∪B ' A′∪B′, and so the
general case reduces to Case 3.

From Proposition 6.1, Theorem 6.1 follows in a very straightforward way:

Proof of Theorem 6.1. We can write SX as the union of the two cones of the suspension
C+X and C−X, where C+X ∪ C−X ∼= X. Then the following square commutes:

πi(X) −−−−→ πi+1(SX)

∼=
y ∼=

y
πi+1(C+X,X) −−−−→

f
πi+1(SX,C−X)

where the vertical isomorphisms come from the long exact sequence of pairs and f
is induced by the inclusion (C+X,X) ↪−→ (SX,C−X). Also, both C+X and C−X are
n−connected if X is (n − 1)−connected, and so Proposition 6.1 gives us that f is an
isomorphism for i+ 1 < 2n and surjective for i+ 1 = 2n.

6.2 Ring structure on stable homotopy groups

We will conclude our analysis of the homotopy groups of spheres by showing some remark-
able, additional structure on the stable homotopy groups of spheres. This structure is that
the stable homotopy groups, when considered as a direct sum πs∗ =

⊕
i∈N

πsi , π
s
∗ is a graded

ring, and furthermore is graded commutative.
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One good way of thinking of the stable homotopy groups πsi is as classifying maps of
the form Si+k → Sk for sufficiently large k. Then a natural multiplication operation comes
as follows: Consider i, j ∈ N, and let k ∈ N such that πsi+j classifies maps of the form

Si+j+k → Sk. Then given f ∈ πsi and g ∈ πsj we can consider their product fg ∈ πsi+j ,
namely the map

Si+j+k
f→ Sj+k

g→ Sk (2)

which is in πsi+j for sufficiently large k. Looking initially, it seems plausible that fg =

(−1)ijgf because the maps Si+j+k
f→ Sj+k

g→ Sk and Si+j+k
g→ Si+k

f→ Sk are nearly
identical.

It is immediately clear that this multiplication is well-defined on homotopy classes of
maps, as any homotopy ft or gt extends immediately to a homotopy of the composition

maps, Si+j+k
ft→ Sj+k

gt→ Sk and gives the desired homotopy between fg = f0g0 and f1g1.
Associativity also follows trivially by associativity of composition of maps.

While distributivity ought to be checked, it follows immediately from commutativity and
the straighforward fact that if f, g : Si+j+k → Sj+k and h : Sj+k → Sk, then h(f + g) =
hf + hg since both h(f + g) and hf + hg equal hf on one hemisphere of Si+j+k and hg on
the other.

So we only need to check graded commutativity, as follows:

Proposition 6.2. The multiplication on πs∗ given in Equation 2 is graded commutative.

Proof. Note first that we can consider the suspension of Sn, giving Sn+1, as the smash
product Sn∧S1, which is simply the suspension of Sn modulo the suspension of some point
x0 ∈ Sn. Thus under this identification, the suspension of a basepoint preserving map
f : Sn → Sn becomes the smash product f ∧ idS1 : Sn ∧ S1 → Sn ∧ S1 and, by iterating
suspensions, the kth suspension of f , written Skf is f ∧ idKS : Sn ∧ Sk → Sn ∧ Sk.

Now, let f : Si+k → Sk and g : Sj+k → Sk, where we have chosen k to be even. Then
we have the following commutative diagram:

Si+k ∧ Sj+k f∧id−−−−→ Sk ∧ Sj+k id∧g−−−−→ Sk ∧ Sk

σ

y τ

y
Sj+k ∧ Sk g∧id−−−−→ Sk ∧ Sk

where σ and τ simply transpose factors. Then we can think of Sj+k and Sk as smash
products of circles, giving that σ is composition of k(j + k) transpositions of adjacent
factors of circles. This has degree −1, and so σ has degree (−1)k(j+k), which is +1 since k
is even.

Thus σ ∼ id, and, by the same argument, τ ∼ id. This gives that f ∧ g = (1∧ g)(f ∧ 1)
is homotopic to the composition (g ∧ 1)(1∧ f) ∼ gf . Similarly, g ∧ f ∼ fg, so we only need
to show that f ∧ g ∼ (−1)ijg ∧ f . To do this, consider the following commutative diagram:

Sj+k ∧ Sj+k −−−−→
f∧g

Sk ∧ Skyσ yσ
Sj+k −−−−→

g∧f
Sk ∧ Sk
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where σ and τ are as before. Note that τ ∼ id, as before, but now σ has degree (−1)(i+k)(j+k).
Since k is even, (i+k)(j+k) mod 2 = ij mod 2, and thus σ has degree (−1)ij . Since additive
inverses of homotopy groups are obtained by precomposing with a reflection of degree −1,
we that (g ∧ f) ◦ σ is homotopic to (−1)ij(g ∧ f). Thus by commutativity of the diagram,
f ∧ g ∼ (−1)ijg ∧ f , as πs∗ is graded commutative, as desired.

7 Conclusion

In this document we have given a very brief introduction to the homotopy groups of spheres,
including the stable homotopy groups. We have shown a few truly remarkable results, such
as the suspension theorem (Theorem 6.1) and the cellular approximation theorem (Theorem
3.2) which, among other things, showcase the importance of CW-complexes in homotopy
theory, and J.H.C. Whitehead’s motivation for their definition.

Occasionally, throughout the exposition, we had to make a few assumptions (as in
Lemmas 1.1 and 1.2, and the fact in the proof of Theorem 6.1). However, each time, these
assumptions were minor, and played relatively minor rolls in the overall proof. We also
directed the reader to a source where they could find a complete proof.

As mentioned in Section 5, there is a strong connection between homotopy and homology
of a topological space. Unfortunately, we were only able to hint at the connection with
Theorem 5.1. Given more time, and more space to work with, my next goal would be to
thoroughly show the connection between (co)homology and homotopy theory, as given in
Theorem 5.1 and Section 4.3 of [1].
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