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Fiber bundles and fibrations play a central role in the theory of tautological rings

and characteristic classes. They generalize the familiar notion of a covering space in

homotopy theory, and also relate to the notion of a sheaf in algebraic geometry. We

will give a brief introduction to fiber bundles and fibrations. We direct the reader who

wishes to find a more thorough introduction to the material to read from [Hat09] or

[Hus75]. We will begin via a specific (and very important) example of a fiber bundle

called a vector bundle.

Definition 0.1 (Vector bundle). Let π : E → B be a continuous surjection of topo-

logical spaces E and B. Then π : E → B is a k-dimensional real vector bundle if the

following conditions are satisfied:

• For all b ∈ B, π−1(b) is a finite-dimensional real vector space of dimension k.

• There exists an open cover {Uα}α∈I of B such that for all Uα there exist homeo-

morphisms

φα : π−1(Uα)
∼−→ Uα × Rn

taking π−1(b) to {b} × Rn via a linear isomorphism.

• If α, β ∈ I, then the composition φ−1β ◦ φα : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk is

well-defined and satisfies

φ−1β ◦ φα(x, v) = (x, gαβ(x)v)

for some GL(k)-valued function

gαβ : U ∪ V → GL(k).
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• These maps satisfy

gαα = I and gαβ(x)gβγ(x)gγα(x) = I

The maps φα are called the local trivializations of the vector bundle, the maps φ−1β ◦φα
are called transition functions, the last condition is called the cocycle condition, and

the spaces E and B are called, respectively, the total space and the base space. Thus

if a map π : E → B has a vector bundle structure on it, we are saying that locally π

looks like a projection map of the form U × Rn → U . In other words, E is locally the

product of B with Rn. We would like to give the reader a few examples with which to

understand this definition.

Example 0.2 (Trivial bundle). The most obvious example of a vector bundle is the

natural projection map

B × Rn → B.

The local product structure exists because of the global product structure. This example

is called the trivial bundle.

Example 0.3 (Möbius bundle). Consider the space E = ([0, 1] × R)/ ∼, where ∼ is

the equivalence relation (0, x) ∼ (1,−x). There is a retraction E → B = S1 via the

map (t, x) 7→ t, which clearly has the structure of a real vector bundle by taking any

open cover of S1 which does not contain the whole space.

This is our first nontrivial example of a vector bundle. We can show this by using

sections of the vector bundle. A section of a real vector bundle is simply a continuous

map s : B → E such that π ◦ s = IdB. In other words, s is a section if it maps each

point of B into its fiber and does so continuously.

Note that the trivial bundle has sections of the form b 7→ (b, t) for some constant t,

in particular for which there is no b ∈ B such that b 7→ (b, 0) if t 6= 0. However, in

the case of our bundle, it is obvious to see that every section must have a point b ∈ S1

such that using the isomorphism φ : π−1(b)
∼−→ {b} × R, φ ◦ s(b) = (b, 0) because of the

intermediate value theorem and the quotient by (0, x) ∼ (1,−x). Thus π : E → B is a

nontrivial example of a real vector bundle.

Note that E is homeomorphic to the Möbius strip with its boundary circle deleted,

and so we call this particular real vector bundle the Möbius bundle.

Example 0.4 (Tautological bundle). The final example of a real vector bundle which

we will give is called the tautological bundle, which is a bundle over a Grassmanian
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manifold Gn(Rn+k). Recall that the Grassmanian manifold, as a set, is the set of n-

dimensional subspaces of Rn+k. Thus we can construct a total space E as the set of

all (V, v) where V ∈ Gn(Rn+k) is an n-dimensional subspace of Rn+k and v ∈ V . We

topologize this as a subspace of Gn(Rn+k)×Rn+k and get a vector bundle structure via

the obvious map π : (V, v) 7→ V .

Example 0.5 (Locally free sheaves). In the context of algebraic geometry and scheme

theory, an example of a vector bundle is a locally free sheaf.

The reader will note that, in all but Example 0.3, we did not use any specific

properties of R beyond its vector space structure. There are analagous definitions and

examples in the case that we replace R with C, which is straightforward to work out.

We leave it to the reader to work out the examples which correspond to Examples 0.2

and 0.5 in the complex case.

We can generalize these ideas further to the notion of a fiber bundle, in which we

replace R or C from the examples above with any topological space X. Recall that

for any map of topological spaces f : A → B, the fiber of f over a ∈ A is simply the

preimage f−1(a).

Definition 0.6 (Fiber bundle). Let π : E → B be a continuous map of topological

spaces E and B. Then π : E → B is a fiber bundle if the following conditions are

satisfied:

(i) For all b ∈ B, π−1(b) is homeomorphic to a fixed topological space F

(ii) There is an open cover {Uα}α∈I with isomorphisms

φα : π−1(Uα)
∼−→ Uα × F

which restricts on fibers to a homeomorphism.

(iii) If α, β ∈ I, then the composition φ−1β ◦ φα : (Uα ∩ Uβ) × F → (Uα ∩ Uβ) × F is

well-defined and satisfies

φ−1β ◦ φα(x, v) = (x, gαβ(x)v)

for some Aut(F )-valued function

gαβ : U ∪ V → Aut(F ).
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(iv) These maps satisfy

gαα = Id and gαβ(x)gβγ(x)gγα(x) = Id

As before, the φ−1β ◦ φα are called transition functions, the last condition is called the

cocycle condition, E is called the total space, B is the base space and we call F the

fiber. Diagrammatically, a fiber bundle is often drawn as

F E

B,

which gives it the feel of a “short exact sequence of spaces.” One can think of fiber

bundles intuitively as a quotient, similar to a group quotient, where F takes on the

same role that a normal subgroup plays in a group quotient.

As we might hope with any object we define, fiber bundles form a category. Maps

of fiber bundles, which we simply call bundle maps, are commuting squares

E E ′

B B′,

(1)

where E → B and E ′ → B′ are fiber bundles and all the maps are continuous. If we fix

a base space B, we can define a category of fiber bundles over B by defining morphisms

to be commuting squares such as (1) with the condition that the map on the bottom

row be the identity map.

One important feature of fiber bundles is that they have the homotopy lifting prop-

erty. Recall that π : E → B has the homotopy lifting property with respect to a space

X if, for all homotopies

h : [0, 1]×X → B,

if there exists a map f0 : {0} ×X → E such that π ◦ f0 = h|{0}×X , then there exists a

homotopy f : [0, 1] × X → E such that π ◦ f = h and f |{0}×X = f0. A fibration is a

surjection π : E → B which satisfies the homotopy lifting property with respect to any

space.

Example 0.7 (Covering spaces). If F is discrete we get a fiber bundle which is familiar

to any beginning student of algebraic topology, namely a covering space.
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Example 0.8 (Hopf fibration). One famous example of a fibration which is applicable

to homotopy theory is the Hopf fibration

S1 S3

S2.

p

The map p : S3 → S2 can be constructed by giving S3 the structure of the complex

subspace of C2 given by {(z0, z1) | |z0|2 + |z1|2 = 1} and S2 the structure of a subspace

of C× R given by {(z, x) | |z|2 + x2 = 1}. Then p is given by

(z0, z1) 7→ (2z0z
∗
1 , |z0|2 − |z1|2).

As denoted by the name, it is a standard result that p : S3 → S2 is a fibration.

Example 0.9 (Homotopy Fibration). In this example we will give an important con-

struction of a fibration, called the homotopy fibration, which we use in Section ??.

Given any map f : E → B, we can associate a topological space

Ef := {(e, p) | e ∈ E and p : I → B such that p(0) = f(e)}.

Ef is topologized as a subspace of E × BI , where BI is the function space of paths in

B. There is a natural map, given by

Ef
f ′→ B : (e, p) 7→ p(1),

which we claim is a fibration. To show this, consider a homotopy g : I ×X → B and

take a map g̃0 : X → Ef such that g̃0 ◦ f ′ = g0, where g0 = g|{0}×X . We can extend

g̃0 to a homotopy g̃ : I × X → Ef which lifts g in the following way: Let γx be the

image of I × {x} under g and we write (ex, σx) = g̃0(x). We define g̃ to be the map

(t, x) 7→ (ex, γ̃x(t)), where γ̃x(t) is the path from f(ex) to γx(t) which follows the path

γx ◦ σx. It is easy to see that g̃ lifts g, and so f ′ : Ef → B is a fibration.

Note that we can embed E into Ef via the map e 7→ (e, pconst(e)), where pconst(e) is the

constant map I → {e}. By contracting the paths in Ef , we have that Ef deformation

retracts onto E and thus that E and Ef are homotopy equivalent. Furthermore, the

following diagram commutes:



6

E Ef

B.

f
f ′

We call the fiber of a point ∗ ∈ B under f ′ to be the homotopy fiber at ∗. One can think

of Ef as a fattening of E which gives us desirable homotopy-theoretic properties, and

the homotopy fiber simply as the fiber under this “fattening.”

There are variations of the definition of a fiber bundle, depending on the structure

on the spaces which we care about. For example, if we care about a smooth structure on

F , E and B then we alter the definition slightly to include that all the maps in question

be smooth, and that the homeomorphisms be diffeomorphisms. Likewise, bundle maps

have the additional condition that they be smooth maps. These are called smooth

bundles. This leads us to an important example of a vector bundle.

Example 0.10 (Vertical tangent bundle). Let Mn be a smooth manifold embedded in

some RN , N > n. The tangent bundle over M is the subset of M × Rn defined by

{(m, v) |m ∈M ⊂ RN and v is in the tangent space of m}.

By this definition, every smooth manifold has a unique tangent bundle.

Given a smooth map of smooth manifolds, f : X → Y , recall the basic definition

from calculus on manifolds that Df is a map from the tangent bundle of X to the

tangent bundle of Y which restricts to a linear map on fibers. If Df is a surjection on

the tangent space of each point, there exists a natural vector bundle which is associated

to f , called the vertical tangent bundle, which is defined simply by Tf := kerDf .

Another variation, which we will introduce in the next section, is called a principal

G-bundle. We mention one final result which illustrates the importance of fibrations in

the study of homotopy groups.

Theorem 0.11 (Theorem 4.41 of [Hat05]). Let π : E → B be a fibration with B path

connected. Then there is a long exact sequence of homotopy groups

· · · → πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ · · · → π0(E, x0)→ 0

Because the universal cover of S1 is contractible, and a covering map is a fibration, it

follows immediately that π1(S
1) = Z and πi(S

1) = 0 for all i 6= 1. Then using, for
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example, the Hopf fibration S3 → S2, the long exact sequence of homotopy groups

gives that for all i > 2, πi(S
2) ∼= πi(S

3).
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