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Classification of Vector Bundles Over P1
k

In this paper we will give a thorough proof of Grothendieck’s classification theorem
of vector bundles over P1

k, first given in [2]. Gorthendieck’s original theorem was
given in the language of representation theory, and applied to vector bundles on the
Riemann sphere. What we will prove is essentially identical, except we will show
the classification theorem for vector bundles over the scheme P1

k, over any field k,
as outlined in [1], which was given in the prompt. Hereafter, any time we use the
notation P1 we will be referring to P1

k.
Before giving a statement of the theorem that we’ll prove, it will be useful to be

specific about the conventions that we will use. Since terms such as ‘vector bundle’
mean slightly different things in different contexts, we will give precise definitions and
constructions for all of the notions that we will use. We note here that most of the
conventions and notation we will use will follow the conventions in [1]. This is not a
summary of [1], but instead in some sense an enriching of it, where I provide in much
greater detail the proof and concepts related to Grothendieck’s theorem.

We will begin by outlining a standard construction of P1
k via a glueing of two

schemes as given in [4]. Let k be any field, and let

U1 = Spec(k[s]), U2 = Spec(k[t]),

U12 = Spec(k[s, s−1]) = U1 \ {0}, U21 = Spec(k[t, t−1]) = U2 \ {0}.
Then P1

k is defined by glueing U1 and U2 together along U12 and U21 via the isomor-
phism

k[s, s−1]
∼→ k[t, t−1]

given by s 7→ t−1. Note that P1
k is a reduced, separated, finite type scheme over k,

and is smooth, projective and geometrically integral. Note also that P1
k is Noetherian

because k is a field.
The reader might note here that this construction of P1 illustrates the fact that

the scheme P1
k is the same as the variety P1

k because k[t], k[s], k[t, t−1], and k[s, s−1]
are all PIDs, and thus every prime ideal is also maximal. In this document we will use
scheme theoretic techniques, and regard P1 as a scheme in order to take advantage
of more advanced machinery. In some cases, doing so might change the space we’re
interested in, as in general not every prime ideal is maximal in a commutative ring
with unit. However, in the case of the projective line, considering it as a scheme
changes nothing.

For the proofs of our two main theorems, we will need two different but equivalent
notions of a vector bundle. Our first definition, used in the proof of Theorem 1.1, is
the same one we saw in our lectures, which is:

Definition 0.1 (Vector Bundle). A vector bundle V of rank r over P1
k is a coher-

ent, locally free OP1
k
−module such that over each open set U on which V is a free

OP1
k
−module, V ∼= O⊕rP1

k
. If r = 1, V is called a line bundle.
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The second, equivalent definition of a vector bundle comes from II.5.18 of [3], and
is as follows:

Definition 0.2 (Vector Bundle). Let X be a scheme. A vector bundle V of rank
r over X consists of a scheme V , an affine morphism f : V → X, an open cover
{Ui} of X and isomorphisms ψi : f−1(Ui) → An × Ui, such that for any i, j and
any open affine subset V = Spec(A) ⊆ Ui ∩ Uj, the automorphism ψ = ψj ◦ ψ−1i

of An × V ∼= Spec(A[x1, ..., xr]) is given by a linear automorphism of A[x1, ..., xn].
Equivalently, ψ is given by a matrix in GL(n,A).

An isomorphism of vector bundles (V, f, {Ui}, {ψi}) and (V ′, f ′{U ′i}, {ψ′i}) of rank
n over X is an isomorphism of schemes g : V

∼→ V ′ such that f = f ′ ◦ g, and such
that (V, f, {Ui} ∪ {U ′i}, {ψi} ∪ ψ′i ◦ g) is a vector bundle over X.

We will use this definition in the proof of Proposition 2.1 later on. We make a
short remark here that Definition 0.2 is in line with the standard definition of a vector
bundle in topology and other areas; the additional structure that it requires makes
it so that one can consider any vector bundle equivalently as a locally free, coherent
OX−module, as in Definition 0.1.

We will now introduce the Picard group of P1
k, written Pic(P1

k), which is the
group of isomorphism classes of line bundles on P1

k, where the group operation is the
tensor product. This group is generated by the tautological line bundle, O(1), or
alternatively by its dual

O(−1) := Hom(O(1),OP1
k
) = O(1)∗.

Here Hom(V,−) maps a sheaf F to the sheaf U 7→ Hom(V (U), F (U)). We will write
O(n) for O(1)⊗n and note that, in general,

O(−n) = O(−1)⊗n = (O(1)∗)⊗n = O(n)∗,

as is given on page 50 of [5]. As it turns out, this group is freely generated by O(1),
meaning that every line bundle over P1

k can be written as O(n) for some n ∈ Z, and
that O(n)⊗O(m) = O(n+m). Note that O = OP1

k
is the trivial element of Pic(P1

k);

it will be a corollary of our main theorem that Pic(P1
k) is freely generated by O(1),

and thus that Pic(P1
k) ∼= Z. The degree of a line bundle L is the integer n ∈ Z such

that L ∼= O(n).
Given a vector bundle V , we define V (n) := V ⊗ O(n) and say that we twist V

by O(n). This comes from an alternative name of O(1), which is the Serre twisting
sheaf. There is an important and well-known result by Serre, which we will include
here as well.

Theorem 0.1 (Serre’s Vanishing Theorem). For any ample line bundle L on a proper
scheme X over a Noetherian ring, and any coherent sheaf F on X, there is an integer
m0 such that for all m ≥ m0, the sheaf F ⊗L⊗m is spanned by its global sections and
has no cohomology in positive degrees.
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Note that this result is simply one of the main properties of ample line bundles,
and thus of O(1), which is ample.

Finally, we will define the sheaf ωX for a topological space X as the sheaf of
differentials on X. As it turns out, on P1

k, ω is simply the sheaf O(−2) (as stated
in [1]). We make the concluding remark on notation, being that since H i is the ith

right-derived functor of the global sections functor Γ, and Γ is left-exact, H0 ∼= Γ.
Thus in this document, instead of referring to the global sections functor as Γ, we
will simply use H0.

1 Statement of the Theorem

Now that we have defined the basic notions which we need, we are ready to state the
main theorem of our document.

Theorem 1.1 (Grothendieck’s Classification of Vector Bundles Over P1). Let V be
a vector bundle on P1

k. Then there exist integers n1, ..., nq and r1, ..., rq such that

V = O(n1)
r1 ⊕ · · · ⊕ O(nq)

rq .

If we require that n1 > n2 > · · · > nq, this decomposition is unique.

As explained in [6], there are two main ways to prove this theorem. One involves
a theorem by Dedekind and Weber, Theorem 1.3, and which is equivalent to Theorem
1.1. Theorem 1.3 is elementary in nature, in that it uses linear algebra and does not
rely heavily on sheaf-theoretic techniques. The proof of equivalence is quite short
and clear, and the bulk of proving this will be proving Theorem 1.3 itself. I am
of the opinion that when possible and practical, it is better to give a proof which
shows intuition and explicit construction. So, although proving our main result by
proving Theorem 1.3 is both valid and fascinating, we will prove Theorem 1.1 by an
alternative route.

The alternative way to prove this is much more scheme-theoretic and involves
sheaf cohomology. It relies on the the Serre Duality Theorem, which we will state,
but not prove.

Theorem 1.2 (Serre Duality). Let V be a vector bundle on X. Then there is an
isomorphism of finite-dimensional k−vector spaces

H i(X, V )
∼→ H1−i(X, V ∗ ⊗ ωX)

where V ∗ is the dual bundle of V given by V ∗(U) = Hom(V (U),OX(U)), and ωX is
the sheaf of differentials on X.

In this document, then, we will prove the equivalence of Theorems 1.1 and 1.3,
and then prove Theorem 1.1 using Serre Duality and sheaf cohomology. Both proofs
which we supply will give the reader significant intuition for why this happens; indeed,
in the proof of Theorem 1.1 we give an explicit construction of the decomposition into
line bundles. We will now give the theorem of Dedekind and Weber.
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Theorem 1.3 (Dedekind and Weber). Let k be a field, x a variable, and consider
k[x, x−1]. Let A ∈ GL(n, k[x, x−1]). Then there exist matrices B ∈ GL(n, k[x]),
C ∈ GL(n, k[x−1]) such that

BAC =

x
d1 0

. . .

0 xdn

 (1)

where d1 ≥ d2 ≥ · · · ≥ dn and the sequence of di’s is unique.

2 Equivalence of Theorems 1.1 and 1.3

Just by looking at the main result of the Theorem 1.3, it seems intuitive that it
might be somehow equivalent to Theorem 1.1. Indeed, if we can somehow represent
our vector bundle V via an invertible matrix A ∈ GL(n, k[x, x−1]) then it is plausible
that the notion of diagonalizability given in 1 will correspond to decomposing V into
a sequence of line bundles, where the base change of multiplying A by B on the left
and by C on the right would correspond to some isomorphism of vector bundles.
Indeed, once these connections are established, the equivalence of theorems becomes
merely a restatement of the same theorem with different language.

Proposition 2.1. Theorems 1.1 and 1.3 are equivalent.

Proof. Consider P1 as given in the introduction, and consider a vector bundle V
over P1 of rank n. We will use the definition of a vector bundle given in Definition
0.2. If we consider the standard cover of P1, given by U0 and U1 as above, then
V will be determined by the glueing map ψ0 ◦ ψ−11 , which, as given in the defini-
tion, is the automorphism Spec(k[x, x−1])n

∼→ Spec(k[x, x−1])n given by a linear
automorphism k[x, x−1]n

∼→ k[x, x−1]n. Equivalently, V is determined by a matrix
A ∈ GL(n, k[x, x−1]).

Since A corresponds to the glueing, note that if we take B ∈ GL(n, k[x]), BA just
corresponds to the same vector bundle as A, except we’ve just changed coordinates
on U0. Likewise, taking C ∈ GL(n, k[x ∈]), the vector bundles given by AC and
A are isomorphic. Indeed, in the case of P1 it is clear by the definition given that
any isomorphism of vector bundles is simply given by some base change of basis of A
of the form BAC, because any isomorphism of vector bundles is an isomorphism on
the local trivial bundles after applying some automorphism to P1. So if A ∼= A′ but
A 6= A′, there must be some change of coordinates, given by an automorphism on P1

and thus a base change of the form BAC, such that A′ = BAC.
Finally, by the construction of O(1) on page 43 of [5], O(n) corresponds to the

isomorphism k[x, x−1]
∼→ k[x, x−1] given by a 7→ an. Therefore, O(n) corresponds to

the 1× 1, invertible matrix (xn) ∈ GL(1, k[x, x−1]).
With the clarifications just given, Theorems 1.1 and 1.3 are essentially the same

statement. Explicitly, given a vector bundle V corresponding to A ∈ GL(n, k[x, x−1]),
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the isomorphism from Theorem 1.1 implies that there exist matrices B ∈ GL(n, k[x])
and C ∈ GL(n, k[x−1]) such that

BAC =

x
d1 0

. . .

0 xdn


and d1 = · · · = dr1 = n1, dr1+1 = · · · = dr2 = n2, ..., drq−1+1 = · · · = drq = nq. The
uniqueness of the sequence d1 ≥ · · · ≥ dn comes from the uniqueness of the sequence
of ni and ri from Theorem 1.1.

Conversely, Theorem 1.3 implies that V is isomorphic to a vector bundle of the
form

O(d1)⊕ · · · ⊕ O(dn), (2)

which corresponds to BAC from the statement of the theorem. We can rewrite (2)
as

O(n1)
r1 ⊕ · · · ⊕ O(nq)

rq

such that d1 = · · · = dr1 = n1 and dri−1+1 = · · · = dri = ni, for 1 < i ≤ q. Again, this
decomposition is unique by uniqueness of the sequence d1 ≤ · · · ≤ dn, and we have
our result.

3 Proof of Grothendieck’s Theorem

We will now move on to give the proof for our main result, Grothendieck’s decom-
position of vector bundles over P1

k. We will need a couple vital lemmas for our
proof, supplied below. For the sake of continuity and flow of the document, we will
not immediately prove the lemmas, but instead supply the proofs after the proof of
Grothendieck’s theorem.

Recall, as stated before, that we will be thinking of vector bundles in the sense of
Definition 0.1, as coherent, locally free sheaves on P1.

Lemma 3.1. Let ϕ : W → V be an injective map of vector bundles on X = P1
k. The

quotient coherent module V/W may not be a vector bundle. There is, however, and
extension W ′ of W in V such that V/W ′ is a vector bundle. The rank of W ′ (resp.
V/W ′) is equal to that of W (resp. the generic rank of V/W ). Here the generic rank
is taken to mean the rank of the stalk at the generic point of X.

Lemma 3.2. Let V be a vector bundle on X. For all i ≥ 0, we have the following
isomorphism of functors:

Exti(V,−) ∼= H i(V ∗ ⊗−) : CohOX
→ Veck

Before proceeding to the full proof, we will give a brief outline of what’s coming.
Here, we consider a vector bundle V which, as shown in the introduction, is a coherent,
(Zariski) locally free sheaf. Step 1: Find a maximal n ∈ Z such that twisting by
O(−n) preserves the existence of nontrivial global sections, and twist. Step 2: Show
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that H0(V (−n)) ∼= kr for some r, and find an embedding of Or into V (−n) such that
V (−n)/Or is a vector bundle. Step 3: Show that the resulting exact sequence

0→ Or → V (−n)→ W (−n)→ 0

splits, giving that V (−n) ∼= Or ⊕W (−n). Step 4: Twist by O(n) and get

V ∼= Or(n)⊕W. (3)

Step 5: Now consider V ′ = W and repeat steps 1 through 4 on V ′, getting V ′ =
Or2(−n2) ⊕W ′. This process must terminate (as we will show). By setting n1 = n,
r1 = r, for some q we have:

V = O(n1)
⊕r1 ⊕ · · · ⊕ O(nq)

⊕rq ,

as desired. Finally, Step 6 is to show that the decomposition in (3) is unique up to
reordering of the direct summands.

Proof of Theorem 1.1. Let V be a nontrivial (i.e. nonzero) vector bundle on P1
k. We

would like to find an integer n ∈ Z which is maximal with respect to the property
that V (−n) has nontrivial global sections, but not V (−(n+ 1)).

Note that if V has no global sections, then since V is coherent and locally free, and
O(1) is ample, twisting by O(1) sufficiently many times makes V globally generated.
Note that twisting by O(1), by definition, changes nothing locally on V because for
small enough open sets U the tensor product is given by

V (U)⊗O O(U) ∼= V (U).

Thus we know that for a sufficiently large m, V (m) = V ⊗ O(m) is nontrivial and
globally generated, and thus has global sections. If m′ is the first integer for which
V (m′) has nontrivial global sections (one such integer must exist because V has no
global sections and V (m) does), then setting n = −m′ gives our desired result.

On the other hand, if V has nontrivial global sections, then consider the identity
given by Serre Duality:

H0(P1, V (−n)) ∼= H1(P1, V ∗(n)⊗ ω) ∼= H1(P1, V ∗(n− 2)). (4)

By Serre’s Vanishing Theorem there exists some m ∈ N, with m 6= 0, such that
H1(P1, V ∗(m − 2)) 6∼= 0 but H1(P1, V ∗((m + `) − 2)) ∼= 0 for all ` > 0. Thus letting
n = m, we have that n is the maximal integer such that H0(V (−n)) ∼= H1(P1, V ∗(m−
2)) 6∼= 0 but H0(V (−(n+ 1))) ∼= H1(P1, V ∗((m+ 1)− 2)) ∼= 0, as desired.

Now that we have this n, recall that V (−n) is a coherent module, and so in par-
ticular, the global sections H0(P1, V (−n)) are a k−module because H0(P1,OP1) ∼= k
(Proposition 3.18 from the lecture notes, [5]). Furthermore, by coherenceH0(P1, V (−n))
is finitely generated, and so we have that H0(P1, V (−n)) is a finite-dimensional
k−vector space. So let H0(P1, V (−n)) ∼= kr for some r ∈ N, and with the stan-
dard basis e1, ..., er and pick a global section e` ∈ kr. Taking O as a module over
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itself, we can use e` to define a map O → V (−n) given by 1 7→ e`. This is clearly
injective on global sections, and necessarily injective on sheaves.

A priori it does not necessarily follow that O is a sub-vector bundle of V (−n),
but if it’s not, then O can be extended to one, O′, by Lemma 3.1. Note that O′ has
the same rank as O, and so in particular, O′ is a line bundle.

To proceed, we will use the following fact, which we will leave unproved, but for
a proof refer the reader to page 2 of [7].

Proposition 3.1. An invertible sheaf of negative degree has no non-zero sections.
An invertible sheaf of degree 0 has no non-zero sections unless it is the trivial sheaf,
in which case it has a one-dimensional family of sections.

Thus we have that O′ must be of the form O(n) for some n > 0. This is because O′
is a proper extension and thus has nontrivial global sections, implying that it cannot
be isomorphic to either O or O(−n) for any n ∈ N. Then since O′ has positive degree,
after one negative Serre twist (i.e. tensoring with O(−1)), O′(−1) has nontrivial
global sections. This is impossible, however, because O′ is a sub-bundle of V (−n) is
nontrivial, and one negative Serre-twist of V (−n) renders it without global sections.

So we have thatO is indeed a sub-bundle of V (−n) such that V ′(−n) := V (−n)/O
is also a vector bundle over P1. This gives us a short exact sequence of vector bundles

0→ O → V (−n)→ V ′(−n)→ 0, (5)

giving the long exact sequence of cohomology groups

0→ H0(P1,O)→ H0(P1, V (−n))→ H0(P1, V ′(−n))→ H1(P1,O)→ · · · .

Note that by Proposition 3.18 in [5], H1(P1,O) = 0 and so

0→ H0(P1,O)→ H0(P1, V (−n))→ H0(P1, V ′(−n))→ 0

is exact, giving that H0(P1, V ′(−n)) ∼= kr/k ∼= kr−1, because H0(P1,O) ∼= k and
H0(P1, V (−n)) ∼= kr. Note that if we twist (5) by O(−1) we get that V ′(−n− 1) has
no global sections, and furthermore, for all ` > 0, V ′(−n− `) has no global sections.
Thus the same n which was the maximal integer such that V (−n) has nontrivial global
sections and V (−(n+ 1)) does not is maximal with respect to the same property for
V ′.

We will show by induction on r that V can be decomposed as V = O(n)⊕r ⊕W ,
where W is a vector bundle such that W (−n) has no global sections. For our base
case, let r = 1. We will consider what extension class V (−n) belongs to—i.e., what
class it corresponds to in Ext1(V ′(−n),O). Lemma 3.2 gives us that this corresponds
to H1(P1, V ′∗(n)). As mentioned before, V ′∗(n) is dual to V ′(−n) and ω ∼= O(−2)
for projective space, so we have by Serre Duality that

H1(P1, V ′∗(n)) ∼= H0(P1, V ′(−n)⊗ ω) ∼= H0(P1, V ′(−n− 2)) ∼= 0

where the last isomorphism comes because V ′(−n − `) has no global sections for
` > 0. Thus V (−n) corresponds to the trivial extension of V ′(−n) by O, meaning
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that V (−n) ∼= O⊕V ′(−n). Note here that V ′(−n) cannot have any nontrivial global
sections. Tensoring on the right by O(n), we get V ∼= O(n)⊕ V ′.

Now let r > 1, and suppose that our statement holds for r − 1. Note that the
rank of V ′ is r − 1, and so by the inductive hypothesis, we have the decomposition
V ′(−n) ∼= O⊕r−1 ⊕W (−n) where W (−n) is a vector bundle with no global sections.
Again we consider which extension V (−n) might correspond to. Note that Ext is
linear with respect to direct sums, and so

Ext1(V ′(−n),O) ∼= Ext1(O⊕r−1 ⊕W (−n),O) ∼= Ext1(O,O)⊕r−1 ⊕ Ext1(W (−n),O).

Note that, again by Lemma 3.2 and Serre Duality,

Ext1(W (−n),O) ∼= H1(P1,W ∗(−n)⊗O) ∼= H1(P1,W ∗(n)) ∼= H0(P1,W (−n−2)) ∼= 0

and
Ext1(O,O) ∼= H1(P1,O) ∼= H0(P1,O(−2)) ∼= 0.

Thus Ext1(V ′(−n),O) ∼= 0, as desired, and we have that

0→ O → V (−n)→ V ′(−n)→ 0

splits, giving that V (−n) ∼= O ⊕ (O⊕r−1 ⊕W (−n)) ∼= O⊕r ⊕W (−n), where W (−n)
has no global sections. By twisting on the right by O(n), we get that

V ∼= O(n)⊕r ⊕W,

as desired.
Furthermore, W is a vector bundle with rank strictly smaller than the rank of V ,

and so we can decompose W as W ∼= O(n′)⊕r
′ ⊕W ′ for some n′, r′ ∈ N and vector

bundle W ′. Setting V ′ as W (not the same V ′ used before in this proof), this gives
us a sequence of decompositions of the form

V (i) ∼= O(ni)
⊕ri ⊕W (i), (6)

where W (i) = V (i+1) and V (0) = V . Since each resulting W (i) has rank strictly
smaller than V (i), this process must terminate after finitely many steps and yield the
decomposition:

V = O(n1)
⊕r1 ⊕ · · · ⊕ O(nq)

⊕rq (7)

of V for some q ∈ N.
We include a small remark that the explicit construction we have given for the

decomposition of V yields that n1 > n2 > · · · > nq because for each iteration, the
vector bundle W (i) in the decomposition V (i) ∼= O(ni)

⊕ri⊕W (i) has no global sections
when twisted by O(−ni). Therefore the ni+1 by which we take W (i)(−ni+1) in the
next step of the decomposition of V must be strictly smaller than the previous ni,
due to the criteria which we imposed on each ni, that it be the maximal integer such
that V (−ni) has nontrivial global sections.

8



We will now show uniqueness via induction that the decomposition in (7) is
uniquely determined by the ni and ri up to reordering. Suppose that

V ∼= O(a1)
⊕s1 ⊕ · · · ⊕ O(aq)

⊕sq

such that a1 > a2 > · · · > aq, and consider the decomposition V ∼= O(a1)
⊕s1 ⊕W

where W ∼= O(a2)
⊕s2 ⊕ · · · ⊕ O(aq)

⊕sq . If we twist V by O(−a1) we get

V (−a1) ∼= O⊕s1 ⊕W (−a1).

Note that O has global sections (namely k), implying that O⊕s1 does as well, and
finally that V (−a1) has nontrivial global sections. But if we twist by one more
O(−1), by assumption W (−a1 − 1) has no global sections because a1 > aj ∀ j > 1,
and O(−1)⊕s1 has no global sections because O(−1) has none. So, in particular,
a1 = n1 in our previous decomposition because a1 is the maximal n ∈ Z by which we
can twist V by O(−n) and have nontrivial global sections.

Now consider the global sections on V (−a1) ∼= V (−n1) which are H0(V (−n1)) ∼=
kr for some r, as given in our original decomposition above. Since a1 = n1, we have:

O⊕s1 ⊕W (−a1) ∼= V (−n1) ∼= O⊕r1 ⊕W ′(−n1) (8)

where W ′ ∼= O(n2)
⊕r2 ⊕ · · · ⊕ O(nq)

⊕rq . In particular, the isomorphism in (8) holds
for global sections. Because a1 > aj and n1 > nj ∀ j 6= 1, both W (−a1) and W ′(−n1)
have no global sections. Thus

ks1 ∼= H0(O⊕s1) ∼= kr ∼= H0(O⊕r1) ∼= kr1 ,

which gives ks1 ∼= kr1 . Then ks1 and kr1 are isomorphic, finite-dimensional k−vector
spaces and so s1 = r1. This is sufficient to prove uniqueness, because we can repeat
the process just given on V (2) ∼= O(a2)

⊕s2 ⊕ · · · ⊕ O(aq)
⊕sq , etc.

We remark here that the uniqueness at the end of the proof just given implies that
no O(a) can be written as the sum of other line bundles O(a′1)⊕ · · · ⊕O(a′p) distinct
from O(a). In particular, this is a proof of the fact mentioned before that the Picard
group on P1

k is freely generated by O(1) or O(−1) and thus isomorphic to Z.
We will now conclude with the proofs of our lemmas which were essential to the

proof of our main theorem. For the proof of Lemma 3.1, we’re going to need an
additional, small lemma as follows:

Lemma 3.3. Let F be a coherent module on P1
k. Then either F has torsion or it is

a locally free sheaf on P1
k. Every coherent sheaf F fits into a short exact sequence:

0→ Ft → F → F ′ → 0 (9)

where Ft is the torsion submodule and F ′ is locally free.
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Proof. Suppose that F is torsion free. We will show that this implies that F is
locally free. Note first that the stalks OP1

k,x
are discrete valuation rings for any x ∈ X

because P1
k is a regular one-dimensional scheme. Also, by assumption Fx is free, say

of rank r, by the classification of finitely-generated modules over a PID. Therefore
on some affine, open neighborhood U 3 x, we have a surjection ϕ : O(U)⊕r � F (U).
We can restrict U to a smaller open set U ′ to avoid the supports of the kernel and
cokernel of ϕ, and thus have an isomorphism ϕ′ : O(U ′)⊕r

∼→ F (U ′). Note that the
choice of x ∈ P1

k was arbitrary, so we have an open cover of P1
k on which F is a free

OP1
k
−module, and F is locally free of rank r, as desired.
Then to fit F into the exact sequence in (9), we just let Ft be the torsion sub-

module, Ft → F be the inclusion map, and by the proof above, F ′ := F/Ft is locally
free (and thus a vector bundle, as coherence is preserved under quotients and both F
and Ft are coherent sheaves).

We’re now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Suppose that V/W is not a vector bundle. Coherence is closed
under quotients, and so it must be that V/W is not locally free. Thus by Lemma 3.3,
V/W has torsion. We can extend W in V by the pullback of the torsion submodule
T of V/W , which makes it fit into the exact sequence

0→ W → W ′ → T → 0.

Note that the (generic) rank of a torsion module is 0, and so we have immediately
that the rank of W and the rank of W ′ is equal, and the same goes for the statement
on generic rank of V/W with the rank of V/W ′. Furthermore, V/W ′ is locally free
(again, by Lemma 3.3), and so V/W ′ is a vector bundle on X.

And finally, the proof of Lemma 3.2 will finish our proof of Grothendieck’s theo-
rem.

Proof of Lemma 3.2. First note that Exti(V,−) is the ith right derived functor of
Hom(V,−), which we write as Γ(Hom(V,−)) (here, Hom is the so-called ‘sheafy
hom’). Note that because V is a vector bundle, and thus locally free, Hom(V,−)
is exact. Our main step of this proof is to apply Grothendieck’s composition of
functors spectral sequence; in order to apply this we need to check that Hom(V,−)
maps injective coherent modules to injective coherent modules. To that end, suppose
Hom(−, I) is exact (i.e., suppose that I is projective). Recall that Hom(V,−) ∼=
V ∗ ⊗− (which is a generalization of Hom(V,−) ∼= V ∗ ⊗− for modules over a ring).
Thus Hom(−,Hom(V, I)) ∼= Hom(−, V ∗ ⊗ I) ∼= Hom(−⊗ V, I) is exact, and we can
apply Grothendieck’s composition of functors spectral sequence. This gives

Hp(Extq(V, F )⇒ Extp+q(V, F ) (10)

for any coherent F , where Extq is the ith right-derived functor ofHom. But Extq(V, F ) =
0 if q > 0 because Hom(V,−) is exact, and so from (10) we get the isomorphism

Hp(V ∗ ⊗ F ) ∼= Hp(Hom(V, F )) ∼= Hp(Ext0(V, F )) ∼= Extp(V, F )

for any coherent F , as desired.
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