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Abstract

Bitcoin sought to create a trustless and censorship-resistant payment
system. However, to obtain a practical day-to-day payment system
capable of serving the global needs, these goals must be balanced with
many other properties, such as scalability and privacy. In this pa-
per, we show that replacing state machine replication (the mechanism
underlying Bitcoin and most other blockchains) with a distributed
commit protocol over private local ledgers removes the scalability bot-
tlenecks and enhances privacy. We demonstrate our approach using
the Canton commit protocol, resulting in the CantonCoin prototype
cryptocurrency.

Disclaimer. This paper presents a theoretical idea for designing a token
based on atomic commits. It is neither related to the Canton Network nor
to tokens that may be issued on the Canton Network.

1 Introduction

The cryptocurrency wave started with Bitcoin [23], whose goal was to enable
payments that are trustless (require no mutual trust or trusted third parties)
and permissionless (open to any two parties). Bitcoin’s model uses state
machine replication backed by a proof-of-work consensus mechanism to ensure
the consistency of a global ledger among an open set of participants. Bitcoin
owners are pseudonymous, identified only by their addresses, i.e., public keys.
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To date, Bitcoin’s approach is arguably the most successful one in achieving
its stated goals, although this success is undermined by the proof of work
economics that lead to centralization [11]. Despite this success, Bitcoin has
not supplanted the traditional financial system for day-to-day use, and its
average number of daily transaction is stagnating in 2019. A practical global
system must provide additional properties, which must be balanced against
the Bitcoin’s goals. In this paper, we focus on two such properties.

1. Scalability Perhaps the best-known limitation of Bitcoin is the lack
of scaling. Bitcoin can process about 7 transactions per second, a figure that
is similar for other systems based on proof of work (Ethereum processes 15).
For comparison, Visa’s payment network averages 2,500 transactions per
second and can process up to 24,000/s [15]. Beyond the consumer market,
the New York Stock Exchange processes several billion trades a day.

2. Privacy Bitcoin’s global ledger is publicly shared with all Bitcoin
users and provides full public insight into the transaction graph, i.e., the
movement of money between the Bitcoin holders’ pseudonyms. The hope is
that the pseudonyms provide sufficient anonymity. However, by correlating
the ledger data with other information, such as known Bitcoin addresses, IP
addresses gathered through the gossip network, and web cookies, it is possible
to infer information about and often even completely de-anonymize users [9].
Such privacy issues can pose strategic risks for businesses in, e.g., finance.

These problems inspired many of the “second layer” and “altcoin” so-
lutions. To improve scalability, second-layer solutions move the processing
of some of the transactions to a secondary system — e.g, side chains — or
to peer-to-peer channels such as in the Lightning Network. Such solutions
have their own tradeoffs, for example, the problems of sufficient collateral
and finding routes in the Lightning Network [13]. Altcoins usually replace
proof of work with other consensus mechanisms. Some mechanisms, such as
proof of stake, aim to retain the permissionless nature of the system. Others
instead opt for permissioned ledgers. These distribute trust among a fixed
set of entities, usually called “validators,” and use classic Byzantine fault tol-
erant (BFT) consensus algorithms, instead of proof-of-work or proof-of-stake.
Ripple [25] and Libra [2] use such algorithms. These algorithms achieve much
higher throughput, but can be safe only if more than two thirds of validators
behave honestly [5]. Arguably, these trust assumptions are not significantly
different from the realities of Bitcoin centralization. However, the validators
are often also explicitly trusted with the monetary policy, i.e., they can
jointly issue or destroy coins in order to, e.g., maintain a stable value.
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While an efficient consensus mechanism improves throughput, replicating
a state machine (i.e., a global ledger) eventually becomes a scaling bottleneck
in altcoins, as each user must process every other user’s transactions. The
resulting total system load is proportional to the number of transactions
multiplied by the number of users. Assuming that every user regularly
transacts, the load grows quadratically with the number of users. While it is
reasonable to assume that designated validators can process tens or hundreds
of thousands of transactions per second, this is unrealistic for home users
who already struggle with Bitcoin-level loads (as witnessed by Bitcoin SPV
clients [11]). This further weakens the trustlessness property and leads to
further centralization.

The privacy problem also appears in the other systems with public
ledgers, such as Ripple [21], and legislators have voiced concerns over privacy
in Libra [24]. The “mixing” solutions such as CoinJoin [8] can help obfuscate
the public transaction graph, but are not infallible [12]. Some altcoins such
as ZCash [14] and Monero [20] employ zero-knowledge proofs for transaction
validation in order to improve privacy and anonymity. These methods hide
the transaction amounts and require no public pseudonyms (addresses), at
the expense of additional computational complexity. The remaining public
information, however, still enables correlation attacks [16, 22].

In this paper we focus on permissioned ledgers, which cryptocurrencies
such as Libra and Ripple went for in order to improve scalability. These
ledgers give up Bitcoin’s original goal of trustless and permissionless payments:
they distribute trust, not remove it, and a sufficiently large group of validators
can both fake and prevent payments. Yet, their state machine replication
approach inherits the privacy and scalability bottleneck issues of a global
public ledger. Our main research questions are then: Can a permissioned
cryptocurrency by implemented using a primitive different from state machine
replication? Can this improve scalability and privacy?

Contributions We show how to implement a permissioned cryptocurrency
using distributed commits instead of state machine replication, using the
smart contract platform Canton [10]. Instead of a global ledger, Canton
maintains a series of private local ledgers, one for each validator and system
user, and synchronizes them on demand using its BFT distributed com-
mit protocol. The protocol keeps the local ledgers of non-Byzantine users
consistent with each other. We use Canton’s open-source smart contract
language DAML [3] to prototype a cryptocurrency, and name the resulting
system CantonCoin. Implementing CantonCoin in DAML allows it to be
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embedded into arbitrary other business processes on Canton. The prototype
implementation can be found online [6]. Our approach improves the targeted
properties as follows:

• Scalability Local ledgers are the key to scalability: a Canton user
only processes changes to their ledger. Thus, CantonCoin users must
process only their own transactions instead of the entirety of world’s
transactions. Furthermore, Canton’s concurrency control mechanisms
and sharding via so-called synchronization domains enable CantonCoin
validators to process transactions in parallel. Finally, Canton does
not rely on expensive cryptography, such as zero-knowledge proofs or
a proof-of-work mechanism. Together, these remove the scalability
bottlenecks found in other cryptocurrencies. In particular, as the
number of validators is essentially independent of the number of users,
the total system load grows linearly with the number of users.

• Privacy The transaction graph is not publicly accessible, as the
local ledgers are private. Consequently, transactions are concealed
from non-validators, and the correlation attacks on public ledger are
not applicable. Moreover, we design the system such that the money
movement is synchronized only among a subset of the validators, not all
of them. This gives the users some privacy towards the validators, too,
as each validator sees only a fraction of a user’s money transactions.
Finally, leveraging Canton’s sub-transaction privacy properties, the
system can be extended such that no single validator learns both
counterparties to any single transaction.

The rest of the paper is structured as follows. In §2, we describe the
main ideas behind CantonCoin with an example. We then provide more
background on Canton in §3. We describe the CantonCoin implementation
in more detail in §4, including the background on Canton’s open-source smart
contract language DAML on the way. In §5, we analyse the properties of
CantonCoin. We survey the related work in §6, and conclude in §7.

2 CantonCoin at a Glance

We consider the following scenario: Alice owns a coin that she wishes to
transfer to Bob. We start by describing how Alice can use distributed
commits to send her money to Bob such that:

• they do not have to trust each other, and
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• no user of CantonCoin except for Alice, Bob, and (a subset of) the
validators either receives or processes any data about this transfer.

This both removes the scalability bottlenecks and provides privacy. Next,
we improve the system’s liveness, such that Alice can transfer her coin even
if a subset of the validators try to prevent her. Lastly, we provide Alice and
Bob with more privacy, by preventing any individual validator from knowing
that both Alice and Bob were involved in the transfer.

2.1 Validators and Users

CantonCoin assumes a fixed, universally known set of validators, who are
jointly trusted with the monetary policy and processing payments. The
validators are analogous to those in Libra [2], or the default UNL nodes in
Ripple’s XRP protocol [7]. Any individual validator may be Byzantine, that
is, need not follow the rules prescribed by Canton and CantonCoin: it may
not send the prescribed messages, or it may send messages different than those
prescribed. However, we assume an upper bound on the number of Byzantine
operators, which we will denote by f (out of a total of N validators). Non-
Byzantine validators are called honest. As usual for permissioned ledgers
and BFT algorithms, the parameters f and N are publicly known. For
comparison, Libra, assumes f < N/3 with N = 28, and XRP assumes
f < N/5 with N being the size of a UNL [7]. We do not fix f now; instead,
we will examine the different properties that we can achieve for different
choices of f (as a fraction of N).

System’s users rely on the validators to receive and transfer coins. We
do not assume users to be honest: any number of them can be Byzantine.

2.2 Valid Coins and Transfers

To be deemed to own a valid coin, a user must obtain so-called endorsements
for the coin from f + 1 validators. By the definition of f , any set of f + 1
validators contains at least one honest validator: intuitively, we rely on this
validator to enforce the correct policies and prevent malicious Alice or Bob
from creating money out of thin air. Obviously, we now assume f < N .

An endorsement is private data that is shared only between a user and a
validator, i.e., replicated at the user and the validator. To transfer a coin
from Alice to Bob, the endorsements for Alice’s coin must be invalidated and
replaced by endorsements for Bob’s coin. This must happen transactionally—
either all of Alice’s endorsements are invalidated (except perhaps those of
the Byzantine validators) and all of Bob’s are created, or there is no change.
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Since the endorsements are distributed among multiple entities, we need a
distributed commit protocol to perform this transaction.

As at least one of Bob’s endorsements comes from an honest validator,
say Vh, we rely on Vh to ensure that money is not created out of thin air.
The system—consisting of CantonCoin smart contract code and the Canton
commit protocol—must ensure the following to the honest validator Vh,
regardless of what the Byzantine validators and users do:

1. Alice’s coin indeed had at least f + 1 endorsements, f of which may
originate from Byzantine validators.

2. The commit performing the transfer invalidates the old endorsements
at all validators who perform the commit correctly. At most f of them
might not—but this is OK, as a coin with only f endorsements will
not be deemed valid.

3. The commit is atomic, in that the old endorsements will not be visible
to any concurrent (or later) commits.

This protects Bob from a malicious Alice, guaranteeing that the money that
Bob receives is real and that Alice cannot spend it again. Additionally, to
protect Alice from Bob, the system must ensure that the commit only takes
place if Alice authorizes it.

Up to now, we have assumed that coins have a unit value. To efficiently
solve the case where Alice wants to move a larger amount of coins to Bob, we
add an amount to each coin and each endorsement, and allow the splitting
and merging of coins.

As the transfer involved only Alice, Bob, and the validators, this simple
approach already removes the principal scaling bottlenecks of state machine
replication, assuming the commit protocol efficiently handles concurrent
commits. It also gives Alice and Bob privacy from the other system users.

2.3 Liveness

While safe for both Alice and Bob, the described system is not live, in the
following sense. Ensuring that Alice’s coin had f + 1 endorsements in the
first step of the transfer requires action from their f + 1 issuing validators.
But a Byzantine validator could refuse to respond and thus prevent Alice
from transferring her money to Bob.

To cope, we first assume that Alice can obtain 2f + 1 endorsements
for her coin. Then, if at most f validators refuse to respond (or respond
claiming that their endorsement has been invalidated), Alice can abort
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the attempted commit and attempt another commit with these validators
removed. Eventually, she will successfully transfer her coin to Bob, even if
any f validators attempt to block her. To be able to transfer his coin later,
Bob also wants 2f + 1 endorsements on his new coin; this requires a total of
3f + 1 validators in the system (as f can refuse to issue Bob endorsements).
Hence, we now assume f < N/3 instead of f < N , and assume that the
underlying commit protocol can abort commit attempts.

2.4 Sub-transaction Privacy

The sketched system gives Alice and Bob privacy from other system users.
Implementing it requires little beyond BFT distributed commits, and such
systems have been known since the 1980s [19]. However, most of them show
the entirety of the committed transaction to all involved parties. If the
protocol provides sub-transaction privacy, though, meaning that individual
parties see only parts of the transaction that are relevant to them, we can
improve the coin’s privacy properties further. Namely, we can obtain a
system where no single validator learns that Alice sent money to Bob. To
that end, we split up our sample transaction into several steps:

1. In the first step, Alice’s endorsements are invalidated, and a subset of old
endorsers (endorsing validators) of size f + 1 issues new endorsements.
These endorsements are ownerless, in that the amount’s owner is
unspecified. This step need be visible only to Alice and her endorsers.

2. Based on these ownerless endorsements, a new set of validators (distinct
from Alice’s validators) creates a new set of ownerless endorsements.
The old ownerless endorsements are deleted. This step must be visible
to both sets of endorsers.

3. The new ownerless endorsements are converted into endorsements for
Bob. This step need be visible only to Bob and his endorsers.

This way, Alice’s endorsers do not learn Bob’s identity, and Bob’s endorsers
do not learn Alice’s identity, so that no single validator learns that Alice sent
money to Bob. This presumes that Alice’s and Bob’s endorsers form disjoint
sets. Since we already derived the requirement for 2f + 1 endorsements
in each set for liveness, this requires 4f + 2 validators in total for each
transaction. To ensure liveness and be able to tolerate f non-responsive
validators, we assume 5f + 2 ≤ N .

We have now seen the basic idea of how mutually distrusting Alice and
Bob can transact in a secure, scalable and private way, even with a number of
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Participant 1 Participant 2

Participant 3 Participant 4

Domain 1 Domain 2 Domain 3

Party 1 Party 2

Party 3

Party 4

Party 5

Figure 1: Canton system model

rogue validators in the system. In the remainder, we will show how this idea
can be implemented using Canton and its smart contract language DAML,
detail the trust assumptions, and analyze the security of the resulting system.

3 Background: Canton in a Nutshell

As established in §2, CantonCoin requires a BFT distributed commit protocol,
and Canton [10] is precisely such a protocol. In this section, we give a brief
overview of the relevant aspects of Canton. We first describe the system
model (§3.1), then the underlying data model (§3.2), and finally the commit
protocol (§3.3).

3.1 System model

Canton’s system model is shown in Figure 1. The system users are called
parties. For CantonCoin, e.g., they include the validators and the users.
Parties run participants that communicate via synchronization domains.
Canton allows parties to synchronize changes over shared pieces of data. The
changes can be made atomic whenever every party runs a participant that
is connected to some joint domain. Participants can connect to multiple
domains simultaneously.

In the following, we assume that every party runs their own participant
and therefore identify the two. Parties can be malicious. Synchronization
domains are assumed to be honest-but-curious. They can be run by individual
trusted third parties or using BFT replication to distribute trust. Parties
must trust the domains they connect to. If a party loses trust in the domain
operator(s), they can move their workflows to other domains.
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Partition: Alice, V1, V2 Informees: Alice, V1, V2

Predicate: true Verifiers:
Change: create e3 Authorizers: V1, V2

Partition: Alice, V2 Informees: Alice, V1, V2

Predicate: e2 exists Verifiers: Alice, V2

Change: delete e2 Authorizers: Alice, V1

Partition: Alice, V1 Informees: Alice, V1

Predicate: e1 exists Verifiers: Alice, V1

Change: delete e1 Authorizers: Alice

Figure 2: Example action of Alice combining two endorsements e1 and e2
into one joint endorsement e3

3.2 Data and transaction model

Canton partitions its state space: every piece of data belongs to exactly one
partition that is identified by a set of parties. Canton’s data objects are
called contracts, since they are intended to correspond to the parties’ rights
and obligations. For example, the endorsement that some validator V1 issues
for Alice is represented as a contract that belongs to Alice and V1, i.e., their
partition {Alice, V1}.

Data is changed by performing transactions, each of which is a list of
actions. For illustration, we consider a sample action where Alice combines
two separate endorsements into a single joint one. More precisely, she
combines the endorsements e1 and e2 from state partitions {Alice, V1} and
{Alice, V2} respectively into a single endorsement in the state partition with
all three parties {Alice, V1, V2}. Each action specifies the following parts
(Fig. 2 shows them for the sample action in the grey box):

• A single state partition P that the action accesses. In the example,
the action to delete e1 occurs in the partition P = {Alice, V1}.

• A predicate on the state in the partition and a change to its state.
Canton contracts are immutable, like in the UTxO model. That is, the
state changes can only delete existing contracts and create new ones,
but cannot change existing contracts. The sample action’s predicate is
that e1 exists, and its change is to delete e1.
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• Its verifiers, a set of parties who verify that the predicate holds on
the accessed part of the state. This set must be a subset of P . In the
example, both Alice and V1 verify the predicate.

• Its authorizers, a set of parties required to authorize the action (Alice
in the example).

• Its informees, a set of parties who should be notified of the action
(Alice and V1 in the example).

• A sub-transaction, i.e., a list of sub-actions. This gives the transaction a
tree (or more precisely, forest) structure, i.e., transactions are hierarchi-
cal. The sub-actions may operate on different partitions. For example,
our sample action has a single sub-action (yellow) that deletes another
endorsement e2 from the partition {Alice, V2}. This sub-action has
another sub-action of its own (green), which creates a joint endorsement
e3 in the partition {Alice, V1, V2}, and has no further sub-actions.

Canton’s data and transaction model is explained in more detail in [4].
We next explain how transactions are committed.

3.3 Distributed commit protocol

To commit transactions of the form we just described, Canton provides a
two-phase commit protocol that is both Byzantine fault tolerant and privacy-
preserving. We explain the protocol on the example transaction from Fig. 2
which joins two endorsements. First, Alice encrypts every action (including
the sub-actions, their sub-actions etc) of the transaction such that only the
action’s informees can decrypt it. Alice then creates a message containing this
encrypted text and the informees in plaintext. In addition to the informees,
it also lists the confirmers, which are the union of authorizers and verifiers,
in plaintext. These messages are arranged in a Merkle tree according to
the original transaction tree structure and sent to a suitable domain in a
single batch (Figure 3). In our example, as there are three actions, the batch
contains three messages. The first message (grey) goes to Alice and V1 and
the other two messages (yellow and green) go to Alice, V1, and V2.

The domain linearly orders and timestamps every batch of messages it
receives. It then forwards the encrypted messages, along with the timestamp,
to their respective informees. This starts the first (prepare) phase of the
two-phase commit protocol.

Every recipient decrypts the messages and checks the correctness of each
received message and its action from their perspective. The correctness
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Alice Domain Validator 1 Validator 2

response
response response

result result
result

Figure 3: Message flow in Canton

Informees: Alice, V1, V2

Confirmers: V1, V2

Informees: Alice, V1, V2

Confirmers: Alice, V1, V2

Informees: Alice, V1

Confirmers: Alice, V1

Figure 4: Domain’s view on the transaction from Fig. 2
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checks consist of three parts: checking the action’s predicates, checking
authorization, and checking whether the action itself is allowed and the
message is correctly derived. Whether the action is allowed is determined by
smart contract code, which is written in DAML. During authorization, the
specified authorizers check that they know why the action is happening; for
example, Alice can authorize the actions since she requested them herself.
While waiting for the checks to pass, the recipients record the tentative
state changes for concurrency control. This way, the checks for unrelated
transactions can be performed in parallel. They also respond with the
outcome of the checks to the domain. The domain collects and aggregates
the responses. If it receives positive responses from all parties that are
supposed to respond, it decides that the transaction should be committed.
Conversely, if someone sends a rejection, the domain decides to abort the
transaction. Responses must be sent within given timeouts, as measured by
the message timestamps. Otherwise, the transaction is aborted.

In the second phase of the protocol, the domain sends the decision to all
involved participants. After receiving the decision, every participant applies
or discards its tentative changes to the local ledger state. The domain is
trusted with sending the same decision to everyone, and also with correctly
ordering and distributing messages (i.e., implementing atomic multicast).
However, Canton includes several mechanisms for detecting domain (or
participant) misbehavior: all message exchanges are signed, aborts include
the rejection reason such that the submitters can double-check the decision,
and participants regularly exchange signatures on their shared state. Privacy-
wise, the domain learns the involved participants, so that it can forward
the messages appropriately. The transaction data—the state predicates and
changes—are encrypted and thus inaccessible to the domain. However, the
domain does learn the shape of the transaction, i.e., the number of actions
and their nesting, as well as their informees and confirmers. Fig. 4 shows
the domain’s view on the transaction consisting of the action in Fig. 2.

Recall that participants can connect to multiple domains. The Canton
design allows transactions performed over separate domains to be processed
completely in parallel. This provides a form of sharding the local ledgers
that further improves scalability.

4 CantonCoin implementation

CantonCoin is implemented through a series of contracts in Canton’s open-
source smart contract language, DAML. We now provide details on this
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implementation, and introduce the relevant DAML concepts on the way (the
full language documentation is available online [3]). As a first approximation,
DAML is the pure, deterministic fragment of the programming language
Haskell (without input/output and other stateful and non-deterministic
parts of the language), extended with constructs to define contract templates.
Canton contracts are instances of the templates, with each instance having
a unique identifier. The templates define the data format stored in these
instances and the allowed Canton actions on contracts of each template.

4.1 Coins and Endorsements

The two main CantonCoin templates are Coin and Endorsement. A Coin
contract represents a possibly valid coin. It stores the owner, the amount,
and the validators that may endorse it. Its data format is specified in DAML
as follows:

1 template Coin with
2 owner: Party
3 possibleEndorsers: Set Party
4 amount: Int
5 where
6 signatory owner
7 observer possibleEndorsers

The parties listed under signatory and observer together determine the
state partition that the contract belongs to. For example, a Coin contract
with owner Alice and possible endorsers V1, V2, V3 lives in the state partition
{Alice, V1, V2, V3}. An Endorsement contract stores the set of endorsing
validators, the contract ID of the endorsed coin, its amount, and the owner.
Additionally, an endorsement contract stores the publicly known parameters
of the setup: the identities of all validators and the maximum number f
of Byzantine validators. The ensure clause makes sure that all endorsing
validators are actually known to be validators.

1 data MarketSetup = MarketSetup with
2 allValidators: Set Party
3 maxByzantine: Int
4

5 template Endorsement with
6 validators: Set Party
7 coinId: ContractId Coin
8 amount: Int
9 owner: Party

10 marketSetup: MarketSetup
11 where
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1 template Endorsement
2 ...
3 choice CombineWith: ContractId Endorsement with
4 otherId: ContractId Endorsement
5 controller owner
6 do
7 exercise otherId AddValidators with other = this
8

9 choice AddValidators: ContractId Endorsement with
10 other: Endorsement
11 controller owner, other.validators
12 do
13 assert $ (other with validators = validators) == this
14 create this with
15 validators = other.validators ‘union‘ validators

Listing 1: Merging Endorsements

12 signatory validators
13 observer owner
14 ensure validators ‘subset‘ marketSetup.allValidators

In terms of signatories and observers, endorsements are dual to coins: the
validators are the signatories and the coin owner is the observer. This effects
how the authorizers and verifiers of actions are defined, and, as we will see
in §5, prevents double spends in CantonCoin and ensures liveness in the
presence of Byzantine validators.

4.2 Merging Endorsements

Having specified the main CantonCoin data formats, we now turn to the
actions. Every template implicitly specifies a creation action. Its authorizers
are the signatories, and its informees are both the signatories and the
observers. For, e.g., the Coin contract, the owner must authorize the
creation, and both the owner and the possible endorsers are the informees.
Creation actions do not require anyone to verify any state predicates.

A template may also define choices, which give rise to exercise actions
in Canton. Intuitively, these allow parties to exercise their rights on the
contract. For example, the Endorsement template allows the owner to
combine its endorsement contract with another one, as shown in §3.2. The
corresponding DAML code is shown in Listing 1. Merging endorsements
is key to making transfers work with DAML’s authorization logic and non-
responsive validators.
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An exercise action deletes the exercised contract. So, for example, once
a CombineWith choice has been exercised on an endorsement contract, the
contract cannot be exercised on any more, preventing double spends. This
action corresponds to the grey action in Fig. 2. The choice’s controller
clause specifies the authorizers of the exercise action. Here, the owner must
authorize every exercise of the CombineWith choice. The informees are the
signatories, the observers, and the authorizers. The action’s state predicate is
that the contract exists. It’s verified by all signatories and all authorizers who
belong to the contract’s state partition. Finally, each choice specifies its
consequences in a do block, which become the sub-actions in the transaction
tree. In this example, the AddValidators choice on the other endorsement
contract is exercised, deleting that contract (corresponds to the yellow action
in Fig. 2). The assert in the do block of AddValidators ensures that
the (yellow) action is only possible if the two endorsements differ at most
in their validators. As a consequence, this creates the new endorsement
contract with the union of the validators (green action).

As mentioned in §3.3, the authorizers of each action check that they
know why the action is happening. One such case is when the authorizer has
initiated the action herself by submitting the transaction. The other case is
when the action is a consequence of an exercise action, and the authorizer is
either also an authorizer of this exercise, or a signatory of the contract of
this exercise. For example, both V1 and V2, who are the authorizers of the
endorsement creation, know why it is happening: (1) V1 is the authorizer
(controller) on the AddValidators exercise, and (2) V2 is a signatory of
the endorsement contract that AddValidators is exercised on. Viewed
differently, the DAML code allows V1 to delegate their control of when to
exercise AddValidators to the owner, provided that the exercise happens
as specified in the CombineWith choice.

4.3 Coin transfers

Once endorsements are merged, we can transfer coins. The core logic is imple-
mented using two choices: Spend in Coin and Transfer in Endorsement.
The Spend choice deletes the coin and requires a set of validators as
controllers. These controllers become authorizers on the corresponding
exercise action, which, as we will see in §5.1, is key to preventing double
spends.

The Transfer choice then transfers the endorsement from the owner’s
coin to a coin of the recipient. The steps are straightforward (code given in
Listing 2):
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1 isQuorum: MarketSetup -> Set Party -> Bool
2 isQuorum m validators = S.size validators > m.maxByzantine
3

4 template Coin
5 ...
6 choice Spend: () with
7 validators: Set Party
8 controller owner, validators
9 do

10 assert $ validators ‘subset‘ possibleEndorsers
11

12 template Endorsement
13 ...
14 choice Transfer: ContractId Endorsement with
15 newOwner: Party
16 newCoinId: ContractId Coin
17 controller owner
18 do
19 assert $ isQuorum marketSetup validators
20 exercise coinId Spend with validators = this.validators
21

22 newCoin <- fetch newCoinId
23 assert $ validators ‘subset‘ newCoin.possibleEndorsers
24 assert $ newCoin.amount == this.amount
25 create this with owner = newOwner, coinId = newCoinId

Listing 2: Transferring coins

1. Delete the endorsement contract for the owner’s coin. This happens
implicitly as the choice is exercised on this endorsement contract.

2. Check that the validators on the endorsement are sufficiently many, i.e.,
form a quorum. This requires the endorsements to have been merged
previously.

3. Spend the owner’s coin, deleting it and thus invalidating its endorse-
ments.

4. Make sure that the recipient’s coin has suitable parameters (same
amount and the validators are registered as possible endorsers).

5. Create the endorsement contract for the new coin.

It is now easy to extend this transfer of endorsements into a full coin trans-
fer, visualized in Fig. 5. CantonCoin defines a template TransferRequest
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Figure 5: Steps of a coin transfer for f = 2

where the recipient specifies the sender, the amount, and the acceptable val-
idators. On such contracts, the sender controls an AcceptRequest choice
that takes a coin and a list of endorsements as parameter. The consequences
of this choice are:

1. A new coin for the recipient is created,

2. The given endorsements are all merged into one endorsement using
CombineWith,

3. The Transfer choice is exercised on the joint endorsement (deleting
the old coin),

4. The transferred endorsement is extended to 2f +1 validators (explained
in the next section), and

5. The extended endorsement is split into single-validator endorsements
again.

These actions are all subactions of the AcceptRequest choice. Therefore,
Canton executes them atomically. In §5, we will show how this ensures
liveness and maintains privacy.

4.4 Further operations

Transfer may leave the recipient with an endorsement from only f + 1
endorsers, as it requires only a quorum of endorsers. As mentioned in §2.3,
for liveness the recipient might want 2f + 1 endorsements. The choice
ExtendEndorsement enables the recipient to add another validator to any
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1 template MasterAgreement with
2 validator: Party
3 user: Party
4 marketSetup: MarketSetup
5 where
6 signatory validator
7 observer user
8

9 nonconsuming choice ExtendEndorsement: ContractId Endorsement
10 with endorsementId: ContractId Endorsement
11 controller user
12 do
13 endorsement <- fetch endorsementId
14 assert $ marketSetup == endorsement.marketSetup
15 assert $ isQuorum marketSetup endorsement.validators
16 exercise endorsementId AddValidators with
17 other = endorsement with validators = singleton validator

Listing 3: Extending endorsements

endorsement with at least f + 1 validators on it (Listing 3). For authoriza-
tion reasons, this choice lives in a MasterAgreement contract between the
validator (signatory) and the user (observer). The qualifier nonconsuming
prevents exercises of the ExtendEndorsement choice from deleting the
MasterAgreement contract, allowing a single MasterAgreement con-
tract to be used to extend arbitrarily many Endorsement contracts.

Additional choices on Endorsements enable merging and splitting as
discussed in §2.2. The underlying ideas are similar to Transfer, so we
omit the details here. In §5.3.1, after having analysed the described im-
plementation, we will present a variation on Transfer that hides transfer
counterparties even from the validators.

To issue new CantonCoins, a group of validators creates new Endorsement
contracts for a Coin contract after each having checked all of the following:

1. The validator is among the possibleEndorsers.

2. The Coin contract is active.

Other than creating MasterAgreement contracts and issuing new coins,
honest validators initiate no other transactions themselves.
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5 Analysis

We now show that the implementation of CantonCoin from §4 has indeed the
properties outlined in §2: safety (§5.1), liveness (§5.2), and privacy (§5.3).

5.1 Safety

As discussed in 2.2, safety for CantonCoin has two aspects:

1. Money cannot be created out of thin air.

2. The owner controls when their coin is spent.

Together, they imply that a coin cannot be spent twice; for if it could, then
either the total amount of coins would increase or someone else would lose
a coin. Conversely, users can destroy a CantonCoin, e.g., by deleting the
Coin contract or all of its endorsements. This is the digital analogue of
burning bank notes or melting real-world coins.

To ensure that money cannot be created out of thin air, recall the defini-
tion of valid coins and the argument in §2.2. We now present the argument
more formally, by considering the appropriate CantonCoin smart contracts.
W.l.o.g., we can fix f to maxByzantine in MarketData, because the check
on line 13 in Listing 1 ensures that all relevant endorsements use the same f .

The money supply for CantonCoin is given by the sum of valid coins. In
§2.2, we defined valid coins from the users’ perspective to be those with f + 1
valid endorsements. This guarantees that at least one honest validator is
endorsing it, even though the user does not know which validators are honest.
Our analysis can, however, assume to know who the honest validators are, and
we define a valid coin to be represented by an active Coin contract endorsed
by at least one honest validator in an active Endorsement contract. In
general, this validator need not be listed in the possibleEndorsers of
the endorsed Coin contract.

We first show that the money supply grows only if honest validators delib-
erately issue new CantonCoins, independently of what the users or Byzantine
validators do. By the definition of valid coins, money supply increases only
when new contracts are created: either a Coin, or an Endorsement with
at least one honest validator as a signatory. Assuming that honest validators
do not issue new CantonCoins, we show none of these creations increase the
money supply, by showing the following two claims:

1. For every created Endorsement, either the Endorsement’s refer-
enced Coin contract was already valid, or a unique coin with the same
amount as the Endorsement is invalidated.
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2. Every created Endorsement refers to a Coin contract ID that has
already been created.

The first claim immediately implies that Endorsement creations do not
increase the money supply. The second claim ensures the same for Coin
creations as follows. To increase the supply, a newly created Coin requires an
Endorsement with an honest validator referring to the Coin’s contract ID.
Canton ensures that the created contract ID will be fresh (with overwhelming
probability), i.e., does not match contract ID of a previously deleted Coin
contract. So if all Endorsement contracts by honest validators refer to
contract IDs of already created Coins, the new coin cannot increase the
money supply.

We prove our claims by examining where Endorsement contracts are
created in the code.1 Endorsements are created only as part of coin issuance,
Transfer, and AddValidators.

• For Transfer, the two desired claims hold as follows:

1. Whenever Transfer creates an Endorsement with at least
one honest validator Vh, it always invalidates a unique coin. To
see this, note that Transfer deletes a Coin contract using the
Spend choice with Vh as one of the choice’s controllers. This
choice requires Vh to be an observer on the spent Coin. The
coin then must have been active: Vh checked this as the Spend
exercise’s state predicate during the first phase of the Canton
two-phase commit protocol. Thus, Transfer indeed invalidates
a coin. To see that the coin is unique, note that once the Coin
is spent, the state predicate check will fail at any other honest
validator V ′h who is an observer of the Coin.

2. Transfer checks explicitly that the newly endorsed coin is active,
and thus created.

• The AddValidators choice needs the authority of the validators
of other endorsement. An honest validator Vh does not exercise
this choice directly, but only through delegation in CombineWith or
ExtendEndorsement.

– Vh checks that the Endorsement on which CombineWith is
exercised is still active and that both Endorsements reference

1We skip the cases for splitting of coins and endorsements and merging of coins, because
the analysis is analogous to the cases presented.
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the same Coin. So if the resulting coin is valid, it was already
valid before. Moreover, Vh previously endorsed the same Coin
contract, which therefore must have been created before.

– The ExtendEndorsement adds Vh to the endorsers. It checks
that the Coin was previously endorsed by at least f +1 validators,
at least one of which (some V ′h) is honest by assumption. Thus,
the coin’s validity does not change. Moreover, V ′h checks that the
previous Endorsement, on which AddEndorsement is called,
referred to a previously created contract.

In conclusion, valid coins cannot be created out of thin air, even if users
and up to f validators are Byzantine. Finally, the authorization rules also
ensure that the owner of a valid coin controls when it becomes invalid. Here,
we assume that honest validators delete their Endorsement contracts only
after the referenced Coin contract has been deleted. Then, the argument is
the following: The owner is a signatory on their Coin contract and the only
choice on the contract, Spend, has the owner as a controller. The owner’s
authorization is therefore needed whenever a Coin contract is created or
deleted. In particular, no group of other users or validators can delete this
contract, unless the owner has previously delegated their authorization in a
separate contract—i.e., the owner has voluntarily given up control of their
coin.

A valid coin need not be usable, though. If there is only one endorser,
then the coin cannot be transferred if f > 0. In the next section, we show
how to ensure liveness for honest owners.

5.2 Liveness

Liveness for CantonCoin means that honest owners can always spend their
coins, i.e., split them, merge them, or transfer them to other users, indepen-
dently of Byzantine validators or other third-party users. Here, we assume
that honest validators are responsive, i.e., they participate in the Canton
commit protocol and send their responses within the given timeouts. We
keep the assumption that honest validators delete their Endorsements only
after the corresponding Coin has been deleted. In contrast, a Byzantine
validator can delete endorsements and master agreements at any time and
they may refuse to respond or send the wrong response. We provide liveness
to honest owners, i.e., owners who do not themselves delete Endorsements
of their coins nor deviate from the Canton protocol and the CantonCoin
DAML code. Note that liveness only makes a guarantee to honest users
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whereas the safety guarantees hold for all users.
First, we establish the following invariant: for each valid coin of an

honest user, at the end of each transaction there are at least f + 1 active
single-validator Endorsement contracts by honest validators. Here, a
single-validator Endorsement is an Endorsement contract where the
validators set is a singleton. Since the user cannot know in advance which
validators are Byzantine, this requires 2f + 1 single-validator endorsements
for every coin. We assume that coin issuance is designed to produce 2f + 1
single-validator endorsements. Coin transfers as described in § 4.3 also
produce 2f + 1 single-validator Endorsement contracts for the new coin.
As Canton guarantees that the transfer transactions are performed atomically,
the invariant holds.

Having single-validator endorsements available enables the owner to
(eventually) transfer their coins, as we now argue. To initiate a transfer, the
owner must pick f + 1 from the 2f + 1 endorsers. Moreover, the recipient
chooses f additional validators that will extend the endorsement. Initially,
this choice is random. Then, the owner attempts to transfer the coin as
described in § 4.3, namely:

1. The chosen f + 1 endorsements are joined,

2. The Transfer choice is executed, which deletes the joint endorsement
and the old coin and creates a new endorsement with f + 1 validators,

3. The Endorsement is extended to 2f + 1 validators and split into
2f + 1 single-validator endorsements.

If any of these 2f + 1 validators are Byzantine, then they can cause the
transaction to fail. However, Canton will report to the owner the validators
that rejected the transaction or did not respond. So, the owner can pick
another set of f + 1 endorsements without the reported validators, and
similarly the recipient for the additional endorsers, and try again. With
each failed attempt, they eliminate at least one Byzantine validator. After
at most f + 1 attempts, the transfer will therefore succeed. This argument
hinges on the following properties:

• In Canton, any action on a contract requests responses only from
confirmers, who are signatories and authorizers. Other parties’ (in-
cluding observers’) responses are not required. In particular, the
possibleEndorsers of a Coin will only be required to an exercise
of Spend if they are the authorizers, which means that they are among

22



the f + 1 chosen endorsers. Similarly, Byzantine third-party users can-
not block transactions because Canton does not involve them. Canton
sill guarantees that all possibleEndorsers will be informed of the
spend, though.

• When the transfer transaction fails, by atomicity, the initial endorse-
ments remain active and single-validator; in particular, they are not
merged. Byzantine validators can delete their endorsements at any
time, but this is analogous to eliminating them during a failed attempt.

• Byzantine validators cannot merge their endorsements with other val-
idators’ without the owner’s consent. We ensure this by making the
owner a controller on the choices AddValidators, CombineWith,
and ExtendEndorsement. This guarantees that the owner can pick
any subset of f + 1 validators from its 2f + 1 single-validator endorse-
ments, at least one of which does not contain a Byzantine validator.

• The constraint 3f + 1 ≤ N ensures that there are always at least 2f + 1
honest validators. So the recipient can find f honest validators that
are distinct from the f + 1 endorsers chosen by the owner.

5.3 Privacy

As described in §3.3, a commit in Canton involves only the informees of a
transaction. For example, in a transaction consisting solely of the action
in Fig. 2, only Alice, V1, and V2 receive any data about the transaction.
Other users and validators receive nothing. Moreover, Canton provides
sub-transaction privacy. That is, given a transaction, the users will see only
the actions (including their subactions) of which they are informees. For
example, only Alice and V1 can see the outermost (grey) action in Fig. 2.
Since every action includes its consequences, Alice and V1 learn about the
sub-actions (yellow and green) even if they were not informees on them.

A transfer requires creating a joint Endorsement contract in the state
partition of some f + 1 validators, say the set Vf+1. As a consequence
of the Transfer choice (Listing 2), this contract and the old Coin con-
tract are deleted, and a new endorsement contract is created, with Vf+1 as
the backers. The deletion of the old coin happens in the partition of its
possibleEndorsers, but the creations of the new endorsement are visible
only to those in Vf+1. The Vf+1 validators also learn who is the recipient as
the new endorsement contains this piece of information.
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For liveness, as discussed in §5.2, the new endorsement is then ex-
tended to f additional validators. As these validators are contained in
the possibleEndorsers of the new Coin contract, they see the creation
action for the new coin, too. However, they do not directly learn the re-
mitter’s (sender’s) identity. Clearly, if some of the f new endorsers were
also part of the possibleEndorsers of the old coin, they can, however,
implicitly connect the transfer to the remitter, as they have seen the deletion
of the old coin in the same transaction, and know the amounts. To prevent
this, the parties to the transfers may use f fresh validators, which, assuming
that the remitter’s coin also had 2f +1 validators, brings the total of involved
validators to 3f + 1, up from 2f + 1 if validators are reused. Thus there
is a trade-off: spreading the information over more validators, where the
validators learn fewer details, or among fewer validators where the validators
learn more details. We will see a more drastic example of this trade-off in
the next section.

The domain, as discussed in § 3.3, learns the shape of the transaction
and the informees. If it has knowledge of CantonCoin code, the domain
might observe that the shape of the transaction (or its part) fits the shape
of a transfer. Assuming that the validators are public, the sequencer can
then deduce the counterparties of the transfer from the involved participants.
The contents—including the amounts—will, however, remain inaccessible to
the domain, as they are encrypted.

5.3.1 Blinded transfers

In §2.4, we describe the idea of how sub-transaction privacy can be used to
hide the counterparties of the transaction from any single validator. We now
sketch how we implement the idea, by extending the basic model shown in
§4. Figure 6 illustrates the steps that the endorsements go through.

The transfer is initiated as described in §4.3, merging f+1 single-validator
endorsements into one Endorsement with f + 1 signatories. These endorse-
ments reference the old Coin contract. Next, however, the remitter now
exercises a new choice StartBlindTransfer instead of Transfer. This
creates a new instance of BlindEndorsement, a new template that is
similar to Endorsement, except that it only has an amount parameter,
and no owner or coin parameters. Furthermore, its signatories are split
into two sets. The first set (shown on the left) is initialized with the signa-
tories of the Endorsement on which StartBlindTransfer was called,
while the second set is initialized to be empty (shown on the right). Then,
fresh endorsers are gradually added to the second set, by exercising an
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Figure 6: Steps of a blinded transfer for f = 2

ExtendBlindEndorsement choice on the MasterAgreement, which is
analogous to the ExtendEndorsement choice. Once f + 1 such fresh en-
dorsers have been added, the RemoveHalf choice on the BlindEndorsement
is used to delete that contract and replace it by one on which the first set of
signatories is empty. Finally, the Unblind choice is executed on the resulting
BlindEndorsement, where the coin and the beneficiary (as the owner)
are specified, resulting in a regular Endorsement for that contract. This
Endorsement can then be extended to f more validators as described in
§2.3. These validators must be fresh, i.e., they must not have been endorsers
of the remitter’s coin. Assuming 2f + 1 validators on the remitter’s coin,
executing a blind transfer requires 4f + 2 live validators.

The BlindEndorsement contracts impact the safety and liveness anal-
ysis minimally; the total money supply now must also include the amounts
in BlindEndorsement contracts which have at least one honest validator.
The code ensures that honest validators don’t issue such endorsements unless
f other validators are also signatories on such endorsements, and the original
coin is spent.

The confidentiality analysis is straightforward: the only actions on
Endorsement and BlindEndorsement contracts that the 2f +1 remitter-
side validators are informees on are the ones up to the exercise of the
RemoveHalf. The beneficiary’s identity does not appear as part of any
contracts or actions in that part of the transaction. Similarly, the beneficiary-
side validators are informees only on actions on BlindEndorsement and
Endorsement contracts after the exercises of ExtendEndorsement start
occurring, and the remitter does not appear as part of any contract or action
preceding these exercises.

In Canton, the domain still learns the shape of the transaction and the
informees, and might be able to guess the counterparties of the transfer. As
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before, amounts and other information remain inaccessible to the domain.

6 Related Work

We make a direct comparison between CantonCoin and mainstream cryp-
tocurrencies of interest, namely: Bitcoin, Ethereum, ZCash, Monero, Libra,
and Ripple. As noted in the Introduction, this paper concerns scalability
and privacy. We will focus our comparison on these properties.

6.1 Scalability

Many of the cryptocurrencies relevant to our work rely on proof-of-work
consensus, which has inherent scaling limitations [27]. Bitcoin and Ethereum,
for example, top out at about 7 to 15 transactions per second. ZCash and
Monero are similarly slow, adding zero-knowledge proofs (ZKPs) to the
complexity of their proof of work.

Both Libra and Ripple achieve extremely competitive industry speeds.
Ripple’s consensus algorithm additionally boasts the ability for subnetworks
to come to agreement consistently without needing to consult the entire
network, thus allowing it to scale horizontally. However, more recent analysis
has shown that the algorithm requires these subnetworks to be almost equal
to the entire network [7]. Furthermore, consensus on any given subnetwork
proceeds in iterative rounds, where the set of possibilities narrows until the
subnetwork reaches consensus. Due to the fact that all nodes broadcast
messages within the subnetwork, the resulting message complexity makes hor-
izontal scalability with growing subnetworks unlikely without modifications
to consensus.

Libra is projected to be quite fast because of its consensus algorithm,
LibraBFT. LibraBFT has a classical feel, in that it proceeds by leader-election
and rounds of voting, which generally leads to prohibitive message complexity
as the network scales. However, in LibraBFT the votes and proposals are
bundled together in such a way that the communication complexity is linear
in the number of nodes on the network (replicas) [26]. This is promising
in terms of scalability, as message complexity in such algorithms frequently
scales poorly.

However, we note here that by proceeding in rounds and replicating
states—as opposed to making distributed commits—both Libra and Ripple
lose scalability potential due to the fact that transactions (or blocks) cannot
be processed in parallel. More generally, these scaling limits tend to plague
proof-of-stake consensus protocols that rule out concurrency by relying
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on leader elections or proceeding in rounds. Finally, as mentioned in the
Introduction, replicating global states creates a total system load that is
quadratic in the number of users.

A standard way to deal with this problem is by sharding the state space.
For Byzantine fault tolerance, a hybrid with state machine replication can
be used, where machines only have to replicate the global state of a shard, as
opposed to the entire network. The idea has been applied to permissionless
cryptocurrencies in protocols such as ChainSpace[1] and OmniLedger[18] that
run shards on top of a BFT consensus algorithm such as PBFT. They use
two-step commits—one step to ensure consistency within the shard, the other
step to ensure consistency across shards. Furthermore, since shards make
commit decisions as a body, each shard has to keep the number of Byzantine
nodes under the limit allowed by the consensus algorithm it runs in each
shard. As the number of shards increases, usurpation of individual shards by
Byzantine nodes becomes more likely, jeopardizing the trustlessness goals.
OmniLedger tries to mitigate this problem by rotating the constituents of
each shard randomly, recommended on a daily basis. ChainSpace mitigates
this issue by killing any transactions in a dispute. Canton also shards the
state space, where the shards are denoted by sets of participants. However,
unlike ChainSpace or OmniLedger, Canton is permissioned, the shards are
not public, and the assignment of data to shards depends on the data, which
provides privacy for CantonCoin. Canton’s domains can also be viewed as
another sharding dimension; transactions run over separate domains run
in parallel, even if they change the same state partitions (local ledgers).
Together, these two forms of sharding allow for true horizontal scalability.

6.2 Privacy

As we have pointed out previously, of the cryptocurrencies present in our
analysis, most give few meaningful privacy guarantees. When utilised for a
public blockchain, the entire ledger is visible to all participants, something
that CantonCoin was explicitly designed to avoid. The only mainstream
cryptocurrencies with extensive privacy guarantees are ZCash [14] and Mon-
ero [20]. However, they are designed largely with anonymity in mind. For
companies who may want to transact with the cryptocurrency but want to
do so both privately and legally, this may in fact be too strong to be useful,
as anonymity may interfere with the standard regulatory checks such as
Know Your Customer.

Furthermore, unlike most other blockchains, ZCash and Monero’s privacy
model prevents them from being auditable. An implementation bug or a
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cryptographic flaw would be extremely difficult to uncover. This differs
from ledgers such as Libra or Ripple, where, barring unfavorable network
partitions, users can detect (though not prevent) if more than f validators
misbehave to start allowing double spends or creating money. In CantonCoin,
since the global state can be reconstructed from the individual validators, an
audit would require information from each of the validators and undermine
users’ privacy. We believe that a Libra/Ripple level of auditability can be
restored in CantonCoin without sacrificing privacy, by having the validators
periodically publish structured joint commitments to the total money supply,
as in the “synchronization tree-structures” of NOCUST [17].

Another disadvantage of CantonCoin is that a user’s ability to guard
their privacy is inversely proportional to their risk tolerance, as the parameter
f factors into the size of the validator set on any given transaction. As
mentioned before, blind transaction require the network to have at least
5f + 2 validators. If a user chooses a more conservative f , such transactions
may become impossible. Hence, there is a trade-off between safety and
privacy. Finally, users should be aware that domain operators can see
message traffic and, if malicious, may be able to perform traffic analysis and
deduce information about the users operating on their domain.

7 Conclusion

Today, cryptocurrencies with distributed (but not fully decentralized) trust
are built using global ledgers with state machine replication. With Canton-
Coin, we have demonstrated how to build such a cryptocurrency on top of
a distributed commit protocol instead. In this way, we were able to get a
system with improved privacy guarantees:

1. The ledger is not globally visible to all users;

2. Individual transactions are only visible to subsets of validators (the
system’s trusted parties); and

3. The counterparties of a transaction are hidden from any individual
validator, using Canton’s sub-transaction privacy features.

While (1) could be achieved with state machine replication in a closed system
of validators, (2) and (3) cannot. Furthermore, while we have not performed
any benchmarks due to the alpha state of Canton at the time of writing of
this paper, unlike systems with global ledgers, CantonCoin can also scale
horizontally. In particular, unrelated transactions can be processed using
different domains, and thus completely in parallel.
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Future Work. We have discussed neither the monetary policies and eco-
nomic incentives behind CantonCoin nor the regulatory compliance aspects
in this paper. While the model could work as presented if we assume that
the validators do their work pro-bono (as in, e.g., Ripple), we have also
experimented with models where the validators impose fees for transactions.
We have also played with changing the money supply, and allowing the users
to occasionally mint an interest on the coins they own. Similarly, regulatory
rules such as Know Your Customer (KYC) can easily be built as logic in
or around MasterAgreement contracts in our code base. Our experience
shows that Canton is a useful platform for such experiments: the presented
model (including blinded transfers) fits in 300 lines of code [6].

We have also not yet considered the case of market setup upgrades, for
example adding new validators, or removing validators that decide to leave
the network or that misbehave. Technologically, these should be simpler
compared to, e.g., Ethereum, as DAML’s notion of signatories makes upgrades
always possible and makes it clear who must approve an upgrade. On a
related note, we believe that the market setup need not be identical among
all of the system’s users, similar to different UNLs in Ripple’s XRP, but we
leave this as future work too.

So far, we have created the smart contract code, but not the logic that
actually invokes it. Such logic could specify, for example, how the users pick
their validators. This would be especially useful if the validators charged
processing fees and/or there existed a reputation system for validators (based
on their detected Byzantine behavior). In this case, there could be trade-offs
between cost and liveness guarantees, or cost and privacy guarantees (e.g., for
blind transfers). Also, validators could use external (non-contract) logic to
enforce anti-money-laundering rules, for example to monitor the total value
of transactions passing through a user’s hands. An alternative is to push
the system further in the direction of privacy and only show the amounts
involved in transfers to an f + 1 group of validators, similar to how the
described blinded transfers work. The other validators would operate only
on cryptographic commitments to amounts.
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