
Streamlining Classical Consensus

Kyle Butt† , Derek Sorensen‡

Abstract. Classical consensus protocols, generally based on rounds of voting, tend to be
unscalable because of sheer message volume. Blockchain-style consensus has emerged to
solve this problem, but there is still a gaping need for faster, more scalable, and reliably safe
consensus protocols. We show that many classical consensus protocols give rise naturally
to a directed acyclic graph (DAG), which we call the message DAG. We restructure two
classical consensus protocols via the message DAG, consolidating message rounds with new
messages, to achieve manifestly improved scalability. The second protocol lends itself to a
scalable blockchain consensus protocol with strong safety and liveness guarantees. We also
present a technique to generalize other message-based, classical consensus protocols.

KEY WORDS

1. Consensus protocol 2. Directed acyclic graph 3. Pre-Nakamoto
consensus 4. Classical consensus 5. Byzantine fault tolerant

1. Introduction

The problem of achieving consensus over an asynchronous network between mutually distrustful
parties has been a subject of research for several decades. Since Nakamoto’s famous paper7 that
gave rise to Bitcoin, a whole class of consensus algorithms has emerged, often making use of
a miner or a leader election of some kind. These include proof of work (PoW), proof of stake
(PoS), and proof of elapsed time (PoET) protocols, among others.

Many of these new algorithm’s proofs of safety and liveness are simply impractical. Bitcoin
and Ethereum can never guarantee that a block won’t be later rewritten by introduction of a longer,
conflicting chain because one can never know a block is final. Any guarantees are probabilistic at
best, though the Bitcoin white paper gives no rigorous proofs7. Other algorithms, like Tangaroa5,
omit the proofs entirely and, unsurprisingly, turn out to be either not safe or not live [3, §3.5].
Due to the high risk inherent in transacting with large amounts of money, if cryptocurrencies are
to play an important role in financial and business settings it is vital that we develop scalable
consensus protocols with mathematically rigorous safety and liveness proofs. While such proofs
are not, generally, characteristic of post-Nakamoto consensus protocols, the literature on classical
consensus has rigorous, mathematical foundations. Unfortunately, these classical algorithms tend
to be unscalable due to sheer messages volume.

We present a technique to generalize classical consensus that tames this inherent scalability
issue. Given such a protocol, it produces another that is manifestly more efficient, and equally
safe and live. Lacking a coherent theory about leaderless message-passing protocols, it is difficult

† K. Butt (kyle@pyrofex.net) is a Staff Software Engineer at Pyrofex Corporation.
‡ D. Sorensen (derek@pyrofex.net) is a Research Mathematician at Pyrofex Corporation.

1

to give a characterization of algorithms for which this will work. En lieu of such a theory, we
provide two examples for which this works and a general framework which one can apply to
other consensus protocols based on message-passing rounds. We expect that readers will be able
to adapt the techniques we present to classical algorithms relevant to them.

The outline of the paper is as follows: In §2 we introduce some preliminary terms and
notation; in §3 we introduce a key concept, the message DAG; in §4 we show how the message
DAG relates to classical consensus and give an overview of our generalization technique; in §5
we show a generalization of Byzantine Reliable Broadcast2; finally, in §6 we do the same but for
Algorithm 26.

2. Preliminaries

2.1. Graph theoretic notions—A directed acyclic graph (DAG) is a directed graph with no
cycles. A cycle is a path along graph edges whose source and target are the same vertex. A leaf
is a graph vertex that is the source to some (possibly empty) set of edges but target to none.

Note that a finite nonempty DAG always has a nonempty set of leaves. To find a leaf, one can
choose a vertex at random and follow any reverse path until termination. In the DAG consisting
of one vertex (and no edges), that vertex is a leaf. In our case, we will only consider DAGs with
a “genesis” vertex such that every node is connected to the genesis vertex via some path along
vertices.

2.2. Induced subgraph—For a graph G with vertex set W and edge set F , the induced
subgraph of the vertex set W ′ ⊆W is a graph G′ with vertex set W ′ and edge set F ′ ⊆ F , where
F ′ is the set of edges in F with both source and target in W ′.

2.3. Partially ordered set—A partially ordered set (poset) is a set P and a binary relation ≤
such that (among other things) for any two elements p1 and p2, either p1 ≤ p2, p2 ≤ p1, or p1

and p2 are not related. In a totally ordered set, we eliminate the third possibility, requiring that
every pair of elements be related. Such relations are called, respectively, a partial order and a
total order.

2.4. Byzantine fault tolerant—A Byzantine node or Byzantine validator is a member of
consensus that behaves arbitrarily. Consistent with the literature, we denote by f the number
of Byzantine validators, and consider a network of size N = 3 f + 1. A consensus protocol is
Byzantine fault tolerant if it can achieve safety and liveness in the presence of f < N

3 Byzantine
validators. A Byzantine quorum is a set of 2 f +1 members of consensus.

3. The message DAG

Consider a message-passing protocol based on broadcasts to the whole network. We can define
a total order on messages on the network, based on the time they were sent, as m1 ≤ m2 iff m1

was sent at exactly the same time or after m2. In practice, on an asynchronous network, it is
impossible to discover this total order. It is, however, possible to know that one message was
sent after another if the sender of the first received the second before sending. Thus we can
reasonably impose a partial order on messages, where some unknown monotonic map from the
partial order to this total order completes the ordering. The message DAG graph-theoretically
represents a partial ordering of messages on the network, based on the time they were sent,
defined as m1 ≤ m2 iff the sender of m1 received m2 before sending. By replacing ≤ with→, a

2

partial order yields a DAG (whose vertices are messages).
If each member of the network, which we call a validator, includes in any message they send

the messages they saw before they sent it, validators can construct and keep a message DAG
locally. If at any point all messages on the network get delivered, every nonfaulty validator will
have exactly the same message DAG stored locally, up to leaves corresponding to messages sent
by faulty validators to some subset of the network.

To build the DAG, each validator w begins with a genesis (or empty) vertex g which represents
the time that the network started listening for messages; g is the maximal element in the partial
order. When w sends a message m it updates its message DAG with a new vertex m and arrows
that point to all the leaves of the DAG, indicating the partial order; it then includes this information
about m’s parents in m. When w receives a message m′ from another participant w′, it checks to
see that its message DAG contains the parents of m′, the messages w′ received before sending m′.
If it does not, w can either wait for more messages until it does have the parents, or ask w′ for the
parent messages.

In Figure 1, validators wi send messages mi, m′i, etc. Because each validator points to the
leaves of their message DAG when they send a new message, we can infer what w1, w2, and w3

had already seen when they sent their messages. Note that m2 and m′3 are not related in the partial
order; there is no way of knowing which was sent first, but we do know that both were sent after
m1 and m3.

What we have described thus far is a slight modification to any message-based protocol
that allows each validator to keep an accurate, local message DAG. We can, however, think
of a message DAG from the view of an omniscient viewer without making any changes to the
protocol. If such an omniscient viewer watches the validators pass messages, it can construct
a message DAG (indeed it can do better and establish a total order). This DAG is a physical
representation of how mathematicians reason about consensus protocols: we, omniscient viewers,
see the actions and decisions of all validators and we reason about them based on the order in
which the messages were sent and received. By keeping an up-to-date message DAG, a validator
keeps a local copy of our abstract reasoning structure.

4. Streamlining consensus

With the message DAG in hand, we have an essential tool to rethink classical consensus protocols
that rely on rounds of message-passing. Our thesis is that if validators keep and update a message
DAG locally, we can vastly improve these protocol’s throughput and scalability by reducing the
prohibitively large message volume.

We will show this streamlining method on two classical consensus protocols. The first is
Byzantine Reliable Broadcast2, a Byzantine fault tolerant message-passing protocol; the second is
Algorithm 2 due to Dwork, Lynch, and Stockmeyer6, a classical protocol that achieves consensus
over a value set V where each validator (member of consensus) begins with an initial value from
V . As we will show, the latter is particularly well-suited for use on the blockchain. In principle
the technique we present could be used on any consensus protocol based on message passing and
rounds. It is not immediately clear to us that we can improve post-Nakamoto consensus protocols
in the same way, due to randomized leader election and other characteristic features.

The general method for a message-passing protocol P, roughly speaking, goes as follows.

3

m′3

m′1 m2

m1 m3

g

Fig. 1. A message DAG for a network of validators wi, the senders of mi or m′i, with
the genesis message g. When w1 sent m′1 it only saw its first message m1 and g,
and had received none from its peers; when w2 sent m2, it had seen m1, m3, and g;
and when w3 sent m′3, it had seen m′1 (thus also m1) and its own previous message,
m3. Any validator sending a message with this message DAG stored locally would
append their message to the DAG, pointing to m2 and m′3.

The consensus protocol P comes to consensus on elements from some collection of objects
O. If it is running on a blockchain, O is the collection of possible blocks. If the protocol is
purely for consensus on messages, O is the collection of possible messages. The network only
communicates via some broadcast primitive. Any message required by P is either sent in the
header of a broadcast, marked with its intended recipient (if any), or in the body of the broadcast.
We call elements O ∈O body messages and messages in P related to consensus header messages.
As the terminology suggests, header messages go in the broadcast header and body messages go
in the broadcast body.

Either the header or body could be empty, for example if the validator doesn’t have any
elements of O at hand to propose, or if a validator has no header messages queued. The header
could also include multiple messages with distinct recipients. If each validator has an unending
supply of elements of O (i.e., of transactions to put into blocks or of messages to send), we
streamline P so that every message related to consensus is first and foremost a proposal of some
O ∈O, with information in the header related to consensus on previously proposed elements of
O in the network.

Each validator keeps a message DAG locally. Validators include the parents of a particular
message in the broadcast. We omit this from the notation, thought it is essential so that validators
can keep an accurate message DAG. When any validator receives a message, it (1) processes
information from the header and body related to consensus, (2) follows P for each message
received in both the header and body, and (3) queues any header messages produced by P. When
it is ready to broadcast, it bundles its queue into the header of a new message, with some fresh
O ∈O in the body (if there is one) and broadcasts. The protocol always initiates over an empty
genesis element g ∈O, which we assume to always exist in O. This element g is the initial vertex
in every validator’s message DAG and we begin consensus by following P to come to consensus
on g.

Once P terminates on any given O ∈O, validators no longer need to include header messages
related to O in their broadcasts. Thus if P can be proved to terminate for any O, data related to O
will be in only a finite number of messages.

4

r2(m) r3(m)

r1(m) e4(m)

e1(m) e2(m) e3(m)

m

Fig. 2. The message DAG for consensus on the message m, where ei(m) and ri(m)

are, respectively, echo and ready messages for m from validator wi. This message
DAG constitutes sufficient proof for any of the four validators to safely brb-deliver
the message m because they would have received a Byzantine quorum of ready
messages, r1(m), r2(m), and r3(m).

Finally, the proofs of safety and liveness all have a similar structure: We look at a particular
element O over which we try for consensus. If we look at each validator’s message DAG and
isolate the body or header messages that relate explicitly to consensus on O, we have a single,
isolated case of the original protocol P. Thus, under the same set of assumptions, this modified
protocol achieves the same proven properties of the original P. Since proofs are all done by
reduction, our modified protocols can be considered direct generalizations of their original
counterparts.

We call such a modified version of any protocol “MDM [protocol name],” short for “message
DAG modified [protocol name].”

5. Byzantine Reliable Broadcast

In the style of §4, we first illustrate on a well known Byzantine fault tolerant message-passing
protocol called Byzantine Reliable Broadcast (BRB)2. BRB is a protocol for secure message
delivery with the property that if one honest validator brb-delivers (i.e. accepts) a given message,
eventually every other validator will eventually do the same.

The basic algorithm goes as follows: The message-sender broadcasts a message m to the
rest of the network via some broadcast primitive brb-broadcast. Each validator wi broadcasts an
“echo” message ei(m) to notify the rest of the network that they received m. Once wi has received
e j(m) from a Byzantine quorum of validators, it broadcasts a “ready” message, ri(m) to notify the
others that it is willing to brb-deliver m if a Byzantine quorum is also willing. Once wi receives
r j(m) from a Byzantine quorum, it brb-delivers m. All-in-all, including the original message
broadcast, there are three rounds of message passing before a message can be considered safe
to brb-deliver. Note that duplicate messages are not a problem, and via simple cryptographic
methods we can make sure each validator can tell who sent which messages.

A network running BRB could pass several messages at once, originating from any validator.
However, BRB requires at least 3× (2 f +1) consensus-specific messages for a network of size
N = 3 f +1 just to come to consensus on one m. Clearly, message cost becomes prohibitive as
the network grows and as the number of messages validators have to send increases.

5

(r2(g),r2(m1),r2(m2),r2(m3),e2(m′1),e2(m4);m′2)

(r3(g),e3(m1),e3(m2),e3(m3),e3(m4);m′3)

(r1(g),e1(m1),e1(m2),e1(m3);m′1) (r4(g),e4(m1),e4(m2),e4(m3);m4)

(e1(g);m1) (e2(g);m2) (e3(g);m3)

g

Fig. 3. The message DAG for MDM BRB. Each message a validator wi sends
contains in the body a new message mi,m′i,m

′′
i , etc. and in the head messages of

the form ei(−) or ri(−) relating to consensus on other messages m j,m′j,m
′′
j , etc.

The validator with this message DAG proceeds by creating a new message that
points to messages m′2 and m′3, the leaves, and which omits any mention of the
genesis message g owing to the fact that there is a Byzantine quorum of r j(g)
messages on the DAG.

Figure 2 represents an omniscient viewer’s message DAG for a single instance of BRB on
a network of size 4 with validators wi, 1 ≤ i ≤ 4. This diagram shows that if any of the four
validators receive all the messages that have been sent, it would be sufficient to safely brb-deliver
m because there is a Byzantine quorum of ready votes. At this point, assuming network conditions
specified for BRB, every other honest validator will eventually brb-deliver m, since BRB has the
totality property2.

5.1. MDM BRB—Since all consensus-specific messages in BRB are broadcasts, it is natural
to implement the message DAG as described in §3. Our modifications to BRB to make MDM
BRB are slight and somewhat cosmetic, but still significant. They are as follows:

Each validator wi begins with an empty genesis message, g, and begins consensus on g. To do
so, wi produces a message with ei(g) in the header and a new message mi in the body. Following
the convention from §4 we write this message (ei(g);mi). When any other validator w j receives
(ei(g);mi), it produces a message with e j(m) and, if it has already received a Byzantine quorum
of echoes for g, r j(g) in the header. Otherwise it includes e j(g). In the body it includes a new
message m j. Using our notation, w j sends (. . . ,r j(g), . . . ,e j(m), . . . ;m′). The ellipses indicate
that any information related to consensus for any other messages received would also go into the
header, as it would do each time it produces a message. Note that an echo or ready consensus
message is only ever included once per body message. Once a validator has seen sufficient votes
to brb-deliver a message m, it no longer needs to include information on m in any other message
headers. Figure 3 gives a sample message DAG which has formed consensus on g. At the point
of consensus for g, the network is just two steps from consensus on four other messages m1, m2,
m3, and m4.

6

If the network need only form consensus on a single body message m, each validator can send
broadcasts with an empty body, i.e. either of the form (ei(m); /0) or (ri(m); /0), depending on the
stage of consensus. This reduces to a single instance of BRB on m where all the echo and ready
header messages appear in the header of empty messages. Also, if body messages do not enter
the network quickly enough, validators can send broadcasts with empty bodies when they don’t
have any new body messages to add to consensus. This is, in the worst case, as efficient as using
BRB in the traditional sense for each new message. In the optimal case that the network needs
to come to consensus on a stream of body messages, originating either from specific sources or
from any validator, it can simultaneously come to consensus on several body messages at once,
significantly reducing the number of messages required per message.

Under some mild network assumptions, BRB is live only in the sense that an honest validator,
proposing a message, will eventually see its message confirmed. However, it can only confirm
messages and will never explicitly reject one (the network can only say “yes,” and never “no”), so
a Byzantine node could spam the network with unconfirmable messages. MDM BRB is at least
as live as BRB, since it includes precisely the same number of header messages per proposed
body message as BRB does; it just compresses many into a single header.

However, aside from a substantially more efficient protocol, the message DAG offers a way to
keep track of these kinds of observable Byzantine faults. If, for example, a Byzantine validator w j

sends broadcasts (. . . ;m) and (. . . ;m′) to distinct members of the network which cite the same set
of parents such that m 6= m′, the network will eventually be able to identify this deviant behavior
in their message DAG. The network can make some optimization choices against Byzantine
behavior by, e.g. ignoring Byzantine validators for a time or excluding them from the network.
In this way, MDM BRB is at least as live than BRB.

Result 1. MDM BRB has the same safety and liveness properties as BRB under the same set of
assumptions.

Proof. Consider MDM BRB for a single message m, looking only at the messages and portions
of message headers that pertain to consensus on m. The resulting message DAG is the original
message DAG we constructed for BRB, meaning that for any individual message m, MDM BRB
executes precisely the same consensus protocol for m that BRB does—the difference is that it
does everything simultaneously. �

Porting results in this way is a general property of the MDM construction. In our case, it
shows that MDM BRB achieves consistency, totality, validity, and integrity [2, p. 119], as does
BRB.

6. Algorithm 26

A construction analogous to the one we’ve just shown can be done for more general and useful
consensus protocols. We show this on a classical protocol that can come to consensus on a
multi-valued set, Algorithm 2 due to Dwork, Lynch, and Stockmeyer6. Algorithm 2 uses voting
rounds and leader selection which can be incorporated into the message DAG much like the
rounds of consensus in BRB. Though Algorithm 2 is not used in general for the blockchain,
we show a construction compatible with the blockchain. In this case, block proposals combine
with messages relating to consensus rounds. Thus, instead of building a blockchain we build a
blockDAG.

7

Algorithm 1 MDM BRB
1: ob jectsOnHand . Elements O ∈O accessible to wi

2: pending,queue← /0
3: MDM-BRB-receive(- ; genesis) . Initiate consensus
4: procedure MDM-BRB-RECEIVE(header ; m)
5: if parents(m)⊂ DAG then queue← queue∪{ei(m)}, receivedEchoes(m)← 1
6: else pending← pending∪{m} . Wait for parents(m)

7: end if
8: for e j(m′) in header do
9: if parents(e j(m′))⊂ DAG then

10: if receivedEchoes(m′)≥ 2 f +1 then queue← queue∪{ri(m′)}
11: else
12: if receivedEchoFrom(m′;w j) is false then

receivedEchoes(m′)← receivedEchoes(m′)+1
13: end if
14: end if
15: else pending← pending∪{m} . Wait for parents(m′)
16: end if
17: end for
18: for r j(m′) in header do
19: if parents(e j(m′))⊂ DAG then . receivedEchoes(m′)≥ 2 f +1
20: if receivedReady(m′)≥ 2 f +1 then brb-deliver m′

21: else
22: if receivedReadyFrom(m′;w j) is false then

receivedReady(m′)← receivedReady(m′)+1
23: end if
24: end if
25: else pending← pending∪{m} . Wait for parents(m′)
26: end if
27: end for
28: end procedure
29: procedure MDM-BRB-BROADCAST(queue 6= /0)
30: if ob jectsOnHand 6= /0 then choose O ∈O, brb-broadcast (queue;O)

31: else brb-broadcast (queue;−)
32: end if
33: end procedure

8

The reason we do this is that a blockchain provides a stream of value sets V over which the
network needs to form consensus; a value set contains a block b and all blocks that it conflicts
with (e.g. other blocks which constitute double spends, etc.). However, this can be used in a
general setting where value sets come in constant supply. As before, validators can send messages
with empty bodies (block proposals), with consensus-related information in the headers if they
don’t have content for some V accessible.

6.1. Algorithm 2—For those unfamiliar with Algorithm 2, we define the basic notions,
summarizing the original exposition [6, p. 298].
• PROPER sets: Possible results of consensus. Initially, each validator’s PROPER set

contains just its own initial value. It adds to it a value v′ 6= v if it receives claims from t+1
validators during the protocol that v is in each of their PROPER sets. If V is well-defined,
a validator adds all of V to its PROPER set after receiving 2t + 1 initial values from
different validators, among which there are not t +1 with the same value.
• Rounds and Phases: A phase consists of three trying rounds and one lock-release round.

We say a phase h belongs to validator wi if h≡ i mod N, where N is the total number of
validators. In the language of modern consensus protocols, we would call wi the leader
during round h.
• Locks: A validator w can lock a value v at certain points of the protocol, each time

associated to a phase number and thus to a phase owner. Intuitively, a validator w locks
on v during phase i if it thinks that the phase owner, wi, will decide on v during phase i;
validator w only releases its lock if it learns this supposition was false. Initially, w locks
no value. A value v is acceptable to w if w has locked on either nothing or v.

During round 1 of phase i, each validator sends a list of all its acceptable values that are also
in its proper set to validator wi. Validator wi tries to find a vlaue to propose, for which it needs
value sets from N− f validators (possibly including itself) that have a nonempty intersection. If
such an intersection exists, wi chooses a value v from the intersection to propose, broadcasting a
lock message of the form (lock value, round number, phase number).

If any validator receives such a lock message at round 2 of phase i from the phase owner, it
locks v, associating the phase number with the lock, and sends an acknowledgment to wi in round
3 of phase i, releasing any earlier lock. Validator wi decides on v if it receives acknowledgments
from at least f +1 processors during round 3 of phase i. It continues to participate in consensus,
holding v as its only acceptable value.

Finally, at round 4 of phase i, the lock-release round, each validator broadcasts a message
(v, i) if it locked on v during phase i. If any validator has a lock on v for phase i and receives a
message (v′, j) with v′ 6= v and j ≥ i, it releases its lock on v.

6.2. Running Algorithm 2 natively on the message DAG—Algorithm 2 has proofs of safety
and liveness, referenced in the original paper as consistency, strong unanimity, and termination [6,
p. 297]. MDM Algorithm 2 inherits these proofs of safety and liveness in the same way that
MDM BRB inherits the properties of BRB. As we streamline Algorithm 2, value sets and
PROPER sets defined in §6.1 function as follows:
• Value sets: We want to optimize Algorithm 2 for the case that there is a constant stream

of value sets V over which the network needs to find consensus. The obvious example
for this is the blockchain, but in principle this could apply to any application for which

9

Algorithm 2 MDM Algorithm 2
1: blocksOnHand . Elements b ∈O (blocks) accessible to wi

2: queue← /0
3: MDM-Algorithm-2-receive(- ; genesis) . Initiate consensus
4: procedure MDM-ALGORITHM-2-RECEIVE(header ; b)
5: if b conflicts with block b′ in PROPER set then
6: if received b from ≥ t +1 distinct validators then add b to PROPER set
7: end if
8: else add b to PROPER set; queue← queue ∪ {(b, round = 1, phase = 1)}
9: end if

10: for (acceptableValues , round = 1, phase = j) in header do
11: if j ≡ i mod N then . wi owns phase j
12: if b in acceptableValues from ≥ N− f distinct validators then

queue← queue ∪ {(lock(b) , round = 2 , phase = j)}
13: end if
14: end if
15: end for
16: for (lock(b) , round = 2 , phase = j) in header do
17: if j 6≡ i mod N then . wi does not own phase j
18: if already locked on some b′ 6= b during phase j′, and b′,b conflict then
19: if j ≥ j′ then release lock on b′

20: end if
21: else lock b for phase j;

queue← queue ∪ {(ack(lock(b)) , round = 3 , phase = j)}
22: end if
23: end if
24: end for
25: for (ack(lock(b)) , round = 3 , phase = j) in header do
26: if j ≡ i mod N then . wi owns phase j
27: if received ack(lock(b)) from ≥ f +1 distinct validators for phase j then

decide b
28: end if
29: end if
30: end for
31: end procedure
32: procedure MDM-ALGORITHM-2-BROADCAST(queue , blocksOnHand)
33: for new round do . the network proceeds in fixed-interval rounds
34: if blocksOnHand 6= /0 then choose b ∈ blocksOnHand ; broadcast (queue ; b)
35: else
36: if queue 6= /0 then broadcast (queue ; -)
37: end if
38: end if
39: end for
40: end procedure

10

there is a constant stream of value sets. In the case of a blockchain, a particular instance
of consensus deals with a block b; V contains b and any blocks proposed by the network
conflicting with b. Since no honest validator will propose a block conflicting with that
which it has already seen, any value set V will have a maximum size of (N− f)+ f (N− f).
As before, we can run consensus on several value sets concurrently.
• PROPER sets: Function as defined previously. A validator’s initial value for consensus

pertaining to V is the first element of V it encounters, either by proposing or by receiving
a message. If it encounters more than one value of V simultaneously, it can choose one
arbitrarily.

MDM Algorithm 2 initiates (in a similar way to MDM BRB) by initiating consensus on a
genesis singleton value set Vgen = {?}. In vanilla Algorithm 2, each validator wi would send {?}
to w1 to start consensus. Instead of sending a message exclusively to w1, a validator w broadcasts
its message DAG indicating that it is seen the genesis block, including its set of acceptable values
for w1. Note that by modifying Algorithm 2 to broadcast all messages, we introduce redundancy
but no core changes. In particular, all the results on safety and liveness still hold. Furthermore,
doing so allows each validator to keep an accurate message DAG locally.

Again, we make every message a block proposal, with any consensus related messages in the
header. Message-passing happens in rounds, like in the original algorithm, where each validator
can send at most one message per round. Rounds proceed as normal, except they process several
blocks simultaneously.

When any particular validator w receives a new block proposal b, it begins consensus for b
on phase 1. In its next block proposal, it includes in the header a message for w1, the owner of
round 1, for consensus. Producing one block per round, it continues to include the data in the
header corresponding to b as it cycles through the round leaders. Once consensus terminates on
b, it no longer includes information about b in its header.

If wi receives two conflicting blocks it sends as its initial value in consensus the first block
it saw. If it saw more than one simultaneously, it chooses one arbitrarily—though one could
expedite consensus by making a canonical choice, e.g. the block with the lowest hash. Since no
honest validator will propose a block conflicting with that which it has already seen, any value set
V will have a maximum size of (N− f)+ f (N− f). The message DAG again provides us with
a way to track observable faults, as the network can tell which nodes propose different initial
values to different nodes. This could improve efficiency and incentivize honest behavior.

Like with BRB, to show that MDM Algorithm 2 is safe and live, styled in the original paper as
consistency, termination, and strong unanimity, we isolate one set of values V containing a block
b and all blocks that conflict with b. Doing this shows us the message DAG corresponding to an
individual instance of Algorithm 2 on a single set of values V . Thus under the same assumptions,
we get the same results, and we conclude that MDM BRB is safe and live.

6.3. Optimizations—Depending on the use case, MDM Algorithm 2 can be optimized.
An example of such an optimization is our recent work, the consensus protocol Casanova1.
Importantly, Casanova eliminates redundant rounds of consensus, optimizing for a transaction-
based blockchain.

11

7. Conclusion

We present the message DAG, a tool to fundamentally restructure classical consensus protocols
based on message-passing rounds. These protocols do not scale in general due to a prohibitively
large message volume. This is unfortunate, since they have practical proofs of safety and liveness,
something generally not true of blockchain consensus protocols. By modifying these algorithms
with the message DAG, we showed a way to streamline them to work on consensus for many
messages, blocks, or value sets at once. This modification makes it possible to achieve consensus
by only ever broadcasting message, or block, proposals with some auxiliary information in the
header.

We present MDM BRB, a streamlined Byzantine fault tolerant message-passing protocol
which has the same safety and liveness guarantees as Byzantine Reliable Broadcast (BRB).2 We
also introduc MDM Algorithm 2, a streamlined Byzantine fault tolerant cosnensus protocol for
consensus on a stream of value sets V which shares safety and liveness properties with Algorithm
26. MDM Algorithm 2 is particularly suited for a blockdag, which builds blocks in a way similar
to a blockchain but in a DAG as opposed to a chain.

8. Acknowledgment

We thank Michael Stay and Nash Foster, resp. the CTO and CEO of Pyrofex, for many enlighten-
ing conversations and insightful observations.

Notes and References
1 Butt, K., Sorensen, D., Stay, M. Casanova. No publisher (2018) https://arxiv.org/abs/1812.02232

2 Cachin, C., Guerraoui, R., Rodrigues, L. Introduction to Reliable and Secure Distributed Programming. New
York: Springer (116-119) 2011

3 Cachin, C., Vukolić “Blockchain Consensus Protocols in the Wild.” No Publisher (2017)
https://arxiv.org/pdf/1707.01873.pdf

4 Chen, J., Micali, S. Algorand. No publisher (2017) https://arxiv.org/pdf/1607.01341.pdf

5 Copeland, C., Zhong, Hongxia “Tangaroa: a Byzantine Fault Tolerant Raft.” Class project in Distributed Sys-
tems, Stanford University (2014) http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland zhong.pdf

6 Dwork, C., Lynch, N., Stockmeyer, L., “Consensus in the Presence of Partial Synchrony.” Journal of the
Association for Computing Machinery 35.2 288-323 (1988) doi:10.1145/42282.42283

7 Nakamoto, S. “Bitcoin: A Peer-to-Peer Electronic Cash System.” No Publisher (2008)
https://bitcoin.org/bitcoin.pdf

12

https://arxiv.org/abs/1812.02232
https://arxiv.org/pdf/1707.01873.pdf
https://arxiv.org/pdf/1607.01341.pdf
http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://bitcoin.org/bitcoin.pdf

